Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 017402    DOI: 10.1088/1674-1056/ad08a9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced conductivity and weakened magnetism in Pb-doped Sr2IrO4

Zhi-Lai Yue(岳智来)1,2, Wei-Li Zhen(甄伟立)1, Rui Niu(牛瑞)1, Ke-Ke Jiao(焦珂珂)1, Wen-Ka Zhu(朱文卡)1,†, Li Pi(皮雳)1,2,‡, and Chang-Jin Zhang(张昌锦)1,3,§
1 High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China;
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Group IV element Pb has been selected as the dopant to dope at the Sr site of Sr2IrO4. It is exciting to find that the single-phase crystal structure could be maintained with a high Pb doping level of up to x=0.3 in Sr2-xPbxIrO4. The mapping data obtained from energy-dispersive x-ray spectroscopy analyses give solid evidence that the Pb ions are uniformly distributed in the Sr2IrO4 matrix. The incorporation of Pb leads to a moderate depression of the canted antiferromagnetic ordering state. The electrical conductivity could be greatly enhanced when the Pb doping content is higher than x=0.2. The present results give a fresh material base to explore new physics in doped Sr2IrO4 systems.
Keywords:  iridates      doping      conductivity      magnetism  
Received:  20 September 2023      Revised:  16 October 2023      Accepted manuscript online:  02 November 2023
PACS:  74.10.+v (Occurrence, potential candidates)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1403203 and 2021YFA1600201), the National Natural Science Foundation of China (Grant Nos. 11974356 and 12274414), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences Large-Scale Scientific Facility (Grant No. U1932216).
Corresponding Authors:  Wen-Ka Zhu, Li Pi, and Chang-Jin Zhang     E-mail:  wkzhu@hmfl.ac.cn;pili@ustc.edu.cn;zhangcj@hmfl.ac.cn

Cite this article: 

Zhi-Lai Yue(岳智来), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Wen-Ka Zhu(朱文卡), Li Pi(皮雳), and Chang-Jin Zhang(张昌锦) Enhanced conductivity and weakened magnetism in Pb-doped Sr2IrO4 2024 Chin. Phys. B 33 017402

[1] Hussey N E and Duffy C 2022 Sci. Bull. 67 985
[2] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[3] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[4] Kaur H, Kaur H and Sharma A 2021 Mater. Today-Proc. 37 3612
[5] Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
[6] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[7] Hussey N E, Buhot J and Licciardello S 2018 Rep. Prog. Phys. 81 052501
[8] Sobirey L, Luick N, Bohlen M, Biss H, Moritz H and Lompe T 2021 Science 372 844
[9] Zhao J Y and Weng Z Y 2022 Chin. Phys. B 31 087104
[10] El Hage R, Humbert V, Rouco V, Sanchez-Santolino G, Lagarrigue A, Seurre K, Carreira S J, Sander A, Charliac J, Mesoraca S, Trastoy J, Briatico J, Santamaria J and Villegas J E 2023 Nat. Commun. 14 3010
[11] Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R and Johnston D C 1994 Phys. Rev. B 49 9198
[12] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402
[13] Wang F and Senthil T 2011 Phys. Rev. Lett. 106 136402
[14] Watanabe H, Shirakawa T and Yunoki S 2013 Phys. Rev. Lett. 110 027002
[15] Kang J and Yuan Y H 2020 Physica C 572 1353621
[16] Peng S T, Lane C, Hu Y, Guo M Y, Chen X, Sun Z L, Hashimoto M, Lu D H, Shen Z X, Wu T, Chen X H, Markiewicz R S, Wang Y, Bansil A, Wilson S D and He J F 2022 npj Quant. Mater. 7 58
[17] Chen X, Hogan T, Walkup D, Zhou W W, Pokharel M, Yao M L, Tian W, Ward T Z, Zhao Y, Parshall D, Opeil C, Lynn J W, Madhavan V and Wilson S D 2015 Phys. Rev. B 92 075125
[18] Brouet V, Mansart J, Perfetti L, Piovera C, Vobornik I, Le Fevre P, Bertran F, Riggs S C, Shapiro M C, Giraldo-Gallo P and Fisher I R 2015 Phys. Rev. B 92 081117
[19] Yan Y J, Ren M Q, Xu H C, Xie B P, Tao R, Choi H Y, Lee N, Choi Y J, Zhang T and Feng D L 2015 Phys. Rev. X 5 041018
[20] Kim Y K, Sung N H, Denlinger J D and Kim B J 2016 Nat. Phys. 12 37
[21] Horigane K, Fujii M, Okabe H, Kobayashi K, Horie R, Ishii H, Liao Y F, Kubozono Y, Koda A, Kadono R and Akimitsu J 2018 Phys. Rev. B 97 064425
[22] Zhao H, Manna S, Porter Z, Chen X, Uzdejczyk A, Moodera J, Wang Z Q, Wilson S D and Zeljkovic I 2019 Nat. Phys. 15 1267
[23] Nelson J N, Parzyck C T, Faeth B D, Kawasaki J K, Schlom D G and Shen K M 2020 Nat. Commun. 11 2597
[24] Huang H, Ji P, Xie Y, Han H and Ge B H 2020 Phys. Rev. Mater. 4 115001
[25] Kim S W, Kang M and Cheon S 2021 Phys. Rev. B 103 045116
[26] Huang H, Ji P, Han H, Duan H M, Ling L H and Ge B H 2022 J. Supercond. Novel Magn. 35 733
[27] Yang J F, Guo W, Xu Z H, Liu Y W, Sun H Y, Sun W J, Yan S J, Li Y Y, Gu Z B, Zhou J, Zhu Y and Nie Y F 2023 Phys. Rev. B 107 235152
[28] Liu M R, Yue J N, Meng J C, Shao T N, Yao C L, Sun X J, Nie J C and Li D B 2023 Appl. Phys. Lett. 122 022402
[29] Ge M, Qi T F, Korneta O B, De Long D E, Schlottmann P, Crummett W P and Cao G 2011 Phys. Rev. B 84 100402
[30] Rizwan S, Zhang S, Yu T, Zhao Y, Zhang S and Han X 2011 Chin. Phys. Lett. 28 107308
[31] Windsor D and Xu H 2023 Phys. Rev. Mater. 7 055004
[32] Hu B, Zhao H D, Zhang Y, Schlottmann P, Ye F and Cao G 2021 Phys. Rev. B 103 115122
[33] Huang H, Wang C F, He X J, Zu H, Ji P and Duan H M 2023 Physica B 665 415045
[34] Torchinsky D H, Chu H, Zhao L, Perkins N B, Sizyuk Y, Qi T, Cao G and Hsieh D 2015 Phys. Rev. Lett. 114 096404
[35] Cao G and Schlottmann P 2018 Rep. Prog. Phys. 81 042502
[36] Engström L, Pereg-Barnea T and Witczak-Krempa W 2021 Phys. Rev. B 103 155147
[37] Kini N, Strydom A M, Jeevan H S, Geibel C and Ramakrishnan S 2006 J. Phys.:Condens. Matter 18 8205
[38] Lane C, Zhang Y B, Furness J W, Markiewicz R S, Barbiellini B, Sun J W and Bansil A 2020 Phys. Rev. B 101 155110
[1] Structure and superconducting properties of Ru1-xMox (x = 0.1-0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[2] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[3] Physical mechanism of secondary-electron emission in Si wafers
Yanan Zhao(赵亚楠), Xiangzhao Meng(孟祥兆), Shuting Peng(彭淑婷), Guanghui Miao(苗光辉), Yuqiang Gao(高玉强), Bin Peng(彭斌), Wanzhao Cui(崔万照), and Zhongqiang Hu(胡忠强). Chin. Phys. B, 2024, 33(4): 047901.
[4] Phonon transport properties of Janus Pb2XAs (X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[5] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[6] Local thermal conductivity of inhomogeneous nano-fluidic films: A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[7] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene-silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[8] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[9] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[10] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[11] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[12] Disorder effects in NbTiN superconducting resonators
Wei-Tao Lyu(吕伟涛), Qiang Zhi(支强), Jie Hu(胡洁), Jing Li(李婧), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2024, 33(2): 027401.
[13] Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films
Kai Chen(陈凯), Jianguo Zhao(赵见国), Yu Ding(丁宇), Wenxiao Hu(胡文晓), Bin Liu(刘斌), Tao Tao(陶涛), Zhe Zhuang(庄喆), Yu Yan(严羽), Zili Xie(谢自力), Jianhua Chang(常建华), Rong Zhang(张荣), and Youliao Zheng(郑有炓). Chin. Phys. B, 2024, 33(1): 016801.
[14] Effects of carrier density and interactions on pairing symmetry in a t2g model
Yun-Xiao Li(李云霄), Wen-Han Xi(西文翰), Zhao-Yang Dong(董召阳), Zi-Jian Yao(姚子健), Shun-Li Yu(于顺利), and Jian-Xin Li(李建新). Chin. Phys. B, 2024, 33(1): 017404.
[15] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
No Suggested Reading articles found!