CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhanced conductivity and weakened magnetism in Pb-doped Sr2IrO4 |
Zhi-Lai Yue(岳智来)1,2, Wei-Li Zhen(甄伟立)1, Rui Niu(牛瑞)1, Ke-Ke Jiao(焦珂珂)1, Wen-Ka Zhu(朱文卡)1,†, Li Pi(皮雳)1,2,‡, and Chang-Jin Zhang(张昌锦)1,3,§ |
1 High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 3 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract Group IV element Pb has been selected as the dopant to dope at the Sr site of Sr2IrO4. It is exciting to find that the single-phase crystal structure could be maintained with a high Pb doping level of up to x=0.3 in Sr2-xPbxIrO4. The mapping data obtained from energy-dispersive x-ray spectroscopy analyses give solid evidence that the Pb ions are uniformly distributed in the Sr2IrO4 matrix. The incorporation of Pb leads to a moderate depression of the canted antiferromagnetic ordering state. The electrical conductivity could be greatly enhanced when the Pb doping content is higher than x=0.2. The present results give a fresh material base to explore new physics in doped Sr2IrO4 systems.
|
Received: 20 September 2023
Revised: 16 October 2023
Accepted manuscript online: 02 November 2023
|
PACS:
|
74.10.+v
|
(Occurrence, potential candidates)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1403203 and 2021YFA1600201), the National Natural Science Foundation of China (Grant Nos. 11974356 and 12274414), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences Large-Scale Scientific Facility (Grant No. U1932216). |
Corresponding Authors:
Wen-Ka Zhu, Li Pi, and Chang-Jin Zhang
E-mail: wkzhu@hmfl.ac.cn;pili@ustc.edu.cn;zhangcj@hmfl.ac.cn
|
Cite this article:
Zhi-Lai Yue(岳智来), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Wen-Ka Zhu(朱文卡), Li Pi(皮雳), and Chang-Jin Zhang(张昌锦) Enhanced conductivity and weakened magnetism in Pb-doped Sr2IrO4 2024 Chin. Phys. B 33 017402
|
[1] Hussey N E and Duffy C 2022 Sci. Bull. 67 985 [2] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189 [3] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [4] Kaur H, Kaur H and Sharma A 2021 Mater. Today-Proc. 37 3612 [5] Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969 [6] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179 [7] Hussey N E, Buhot J and Licciardello S 2018 Rep. Prog. Phys. 81 052501 [8] Sobirey L, Luick N, Bohlen M, Biss H, Moritz H and Lompe T 2021 Science 372 844 [9] Zhao J Y and Weng Z Y 2022 Chin. Phys. B 31 087104 [10] El Hage R, Humbert V, Rouco V, Sanchez-Santolino G, Lagarrigue A, Seurre K, Carreira S J, Sander A, Charliac J, Mesoraca S, Trastoy J, Briatico J, Santamaria J and Villegas J E 2023 Nat. Commun. 14 3010 [11] Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R and Johnston D C 1994 Phys. Rev. B 49 9198 [12] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G and Rotenberg E 2008 Phys. Rev. Lett. 101 076402 [13] Wang F and Senthil T 2011 Phys. Rev. Lett. 106 136402 [14] Watanabe H, Shirakawa T and Yunoki S 2013 Phys. Rev. Lett. 110 027002 [15] Kang J and Yuan Y H 2020 Physica C 572 1353621 [16] Peng S T, Lane C, Hu Y, Guo M Y, Chen X, Sun Z L, Hashimoto M, Lu D H, Shen Z X, Wu T, Chen X H, Markiewicz R S, Wang Y, Bansil A, Wilson S D and He J F 2022 npj Quant. Mater. 7 58 [17] Chen X, Hogan T, Walkup D, Zhou W W, Pokharel M, Yao M L, Tian W, Ward T Z, Zhao Y, Parshall D, Opeil C, Lynn J W, Madhavan V and Wilson S D 2015 Phys. Rev. B 92 075125 [18] Brouet V, Mansart J, Perfetti L, Piovera C, Vobornik I, Le Fevre P, Bertran F, Riggs S C, Shapiro M C, Giraldo-Gallo P and Fisher I R 2015 Phys. Rev. B 92 081117 [19] Yan Y J, Ren M Q, Xu H C, Xie B P, Tao R, Choi H Y, Lee N, Choi Y J, Zhang T and Feng D L 2015 Phys. Rev. X 5 041018 [20] Kim Y K, Sung N H, Denlinger J D and Kim B J 2016 Nat. Phys. 12 37 [21] Horigane K, Fujii M, Okabe H, Kobayashi K, Horie R, Ishii H, Liao Y F, Kubozono Y, Koda A, Kadono R and Akimitsu J 2018 Phys. Rev. B 97 064425 [22] Zhao H, Manna S, Porter Z, Chen X, Uzdejczyk A, Moodera J, Wang Z Q, Wilson S D and Zeljkovic I 2019 Nat. Phys. 15 1267 [23] Nelson J N, Parzyck C T, Faeth B D, Kawasaki J K, Schlom D G and Shen K M 2020 Nat. Commun. 11 2597 [24] Huang H, Ji P, Xie Y, Han H and Ge B H 2020 Phys. Rev. Mater. 4 115001 [25] Kim S W, Kang M and Cheon S 2021 Phys. Rev. B 103 045116 [26] Huang H, Ji P, Han H, Duan H M, Ling L H and Ge B H 2022 J. Supercond. Novel Magn. 35 733 [27] Yang J F, Guo W, Xu Z H, Liu Y W, Sun H Y, Sun W J, Yan S J, Li Y Y, Gu Z B, Zhou J, Zhu Y and Nie Y F 2023 Phys. Rev. B 107 235152 [28] Liu M R, Yue J N, Meng J C, Shao T N, Yao C L, Sun X J, Nie J C and Li D B 2023 Appl. Phys. Lett. 122 022402 [29] Ge M, Qi T F, Korneta O B, De Long D E, Schlottmann P, Crummett W P and Cao G 2011 Phys. Rev. B 84 100402 [30] Rizwan S, Zhang S, Yu T, Zhao Y, Zhang S and Han X 2011 Chin. Phys. Lett. 28 107308 [31] Windsor D and Xu H 2023 Phys. Rev. Mater. 7 055004 [32] Hu B, Zhao H D, Zhang Y, Schlottmann P, Ye F and Cao G 2021 Phys. Rev. B 103 115122 [33] Huang H, Wang C F, He X J, Zu H, Ji P and Duan H M 2023 Physica B 665 415045 [34] Torchinsky D H, Chu H, Zhao L, Perkins N B, Sizyuk Y, Qi T, Cao G and Hsieh D 2015 Phys. Rev. Lett. 114 096404 [35] Cao G and Schlottmann P 2018 Rep. Prog. Phys. 81 042502 [36] Engström L, Pereg-Barnea T and Witczak-Krempa W 2021 Phys. Rev. B 103 155147 [37] Kini N, Strydom A M, Jeevan H S, Geibel C and Ramakrishnan S 2006 J. Phys.:Condens. Matter 18 8205 [38] Lane C, Zhang Y B, Furness J W, Markiewicz R S, Barbiellini B, Sun J W and Bansil A 2020 Phys. Rev. B 101 155110 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|