|
|
Angular and planar transport properties of antiferromagnetic V5S8 |
Xiao-Kai Wu(吴晓凯)1, Bin Wang(王彬)1, De-Tong Wu(吴德桐)1, Bo-Wen Chen(陈博文)1, Meng-Juan Mi(弭孟娟)2, Yi-Lin Wang(王以林)2, and Bing Shen(沈冰)1,† |
1 Center for Neutron Science and Technology and School of Physics, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, and Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China; 2 School of Integrated Circuits, Shandong Technology Center of Nanodevices and Integration, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
Abstract Systemically angular and planar transport investigations are performed in layered antiferromagnetic (AF) V5S8. In this AF system, obvious anomalous Hall effect (AHE) is observed with a large Hall angle of 0.1 compared to that in ferromagnetic (FM) system. It can persist to the temperatures above AF transition and exhibit strong angular field dependence. The phase diagram reveals various magnetic states by rotating the applied field. By analyzing the anisotropic transport behavior, magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line. The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations. These behaviors are attributed to the scattering from spin-orbital coupling instead of nontrivial topological origin. Our results reveal anisotropic interactions of magnetism and electron in V5S8, suggesting potential opportunities for the AF spintronic sensor and devices.
|
Received: 16 November 2023
Revised: 12 December 2023
Accepted manuscript online: 15 December 2023
|
PACS:
|
75.20.En
|
(Metals and alloys)
|
|
Fund: Project supported by the open research fund of Songshan Lake Materials Laboratory (Grant No. 2021SLABFN11), the National Natural Science Foundation of China (Grant Nos. U2130101 and 92165204), Natural Science Foundation of Guangdong Province (Grant No. 2022A1515010035), Guangzhou Basic and Applied Basic Research Foundation (Grant No. 202201011798), the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008), the Open Project of Key Laboratory of Optoelectronic Materials and Technologies (Grant No. OEMT-2023-ZTS-01), the National Key R&D Program of China (Grant Nos. 2023YFF0718400 and 2023YFA1406500), and (national) college students innovation and entrepreneurship training program, Sun Yat-sen University (Grant No. 202310359). |
Corresponding Authors:
Bing Shen
E-mail: shenbing@mail.sysu.edu.cn
|
Cite this article:
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰) Angular and planar transport properties of antiferromagnetic V5S8 2024 Chin. Phys. B 33 027503
|
[1] Elphick K, Frost W, Samiepour M, Kubota T, Takanashi K, Sukegawa K, Mitani S and Hirohat A 2021 Sci. Technol. Adv. Mater. 22 235 [2] Smejkal L, Mokrousov Y, Yan B H and MacDonald A H 2018 Nat. Phys. 14 242 [3] Ghimire N J, Botana A, Jiang J S, ZhangJ J, Chen J S and Mitchell J F 2018 Nat. Commun. 9 3280 [4] Shekhar C, Kumar N, Grinenko V, et al. 2018 Proc. Natl. Acad. Sci. USA 115 9140 [5] Kimata M, Chen H, Kondou K, Sugimoto S, Muduli P K, Ikhlas M, Omori Y, Tomita T, MacDonald A H, Nakatsuji S and Otani Y 2019 Nature 565 627 [6] Zhang W F, Han W, Yang S H, Sun Y, Zhang Y, Yan B and Parkin S S 2016 Sci. Adv. 2 e1600759 [7] Smejkal L, Sinova J and Jungwirth T 2022 Phys. Rev. X 12 040501 [8] Duan X D, Wang C, Pan A L, Yu R Q and Duan X F 2015 Chem. Soc. Rev. 44 8859 [9] Choi W, Choudhary N, Han G H, Park J, Akinwande D and Lee Y H 2017 Mater. Today 20 116 [10] Deng Y, Yu Y, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H , and Zhang Y B 2016 Science 367 895 [11] Wang Y, Sofer Z, Luxa J and Pumera M 2016 Adv. Mater. Interfaces 3 1600433 [12] Sugawara K, Nakata Y, Fujii K, Nakayama K, Souma S, Takahashi T and Sato T 2019 Phys. Rev. B 99 241404 [13] Guo Y Q, Deng H T, Sun X, et al. 2017 Adv. Mater. 29 1700715 [14] Schrieffer J R and Wolff P A 2016 Phys. Rev. 149 491 [15] Schrieffer J 1967 J. Appl. Phys. 38 1143 [16] Coqblin B and Schrieffer J 1969 Phys. Rev. 185 847 [17] Endo M, Kanai S, Ikeda S, Matsukura F and Ohno H 2010 Appl. Phys. Lett. 96 21 [18] Hardy W J, Yuan J T, Guo H, Zhou P P, Lou J and Natelson D 2016 ACS Nano 10 5941 [19] Niu J J, Yan B M, Ji Q Q, Liu Z F, Li M Q, Gao P, Zhang Y F, Yu D P and Wu X S 2017 Phys. Rev. B 96 075402 [20] Zhang R Z, Zhang Y Y and Du S X 2020 Chin. Phys. B 29 077504 [21] Zhou Z, Zhao X X, Wu L M, et al. 2022 Phys. Rev. B 105 235433 [22] Yan C J, Chen L N, Zhou K Y, Yang L P, Fu Q W, Wang W Q, Yue W C, Liang L K, Tao Z and Du J 2023 Chin. Phys. B 32 017503 [23] Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W and Seongshik O 2011 Phys. Rev. B 2 073109 [24] Lupke F, Pham A D, Zhao Y F, Zhou L J, Lu W C, Briggs E, Bernholc J, Kolmer M, Teeter J, Kolmer M, Teeter J, Ko W, Chang C Z, Ganesh P and Li A P 2022 Phys. Rev. B 105 035423 [25] Zhou J D, Zhang W J, Lin Y C, et al. 2022 Nature 609 46 [26] Silbernagel B G, Levy R and Gamble F R 1975 Phys. Rev. B 11 4563 [27] Nozaki H, Umehara M, Ishizawa Y, Saeki M, Mizoguchi T and Nakahira M 1978 JPCS 39 851 [28] Nakanishi M, Yoshimura K, Kosuge K, Goto T, Fujii T and Takada J 2000 J. Magn. Magn. Mater. 221 301 [29] Balents L 2010 Nature 464 199 [30] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [31] Markou A, Taylor J, Kalache A, Werner P, Parkin S and Felser C 2010 Phys. Rev. Mater. 2 051001 [32] Manna K, Muechler L, Kao T H, et al. 2018 Phys. Rev. X 8 041045 [33] Zhang Y, Deng K, Zhang X, Wang M, Wang Y, Liu C, Mei J W, Kumar S, Schwier E F, Shimada K, Chen C Y and Shen B 2020 Phys. Rev. B 101 205126 [34] Yi E K, Zheng D F, Pan F H, Zhang H X, Wang B, Chen B W, Wu D T, Liang H L, Mei Z X, Wu H, Yang S Y, Cheng P, Wang M and Shen B 2023 Phys. Rev. B 107 035142 [35] Xu Y, Das L, Ma J Z, Yi C J, Nie S M, Shi Y G, Tiwari A, Tsirkin S S, Neupert T, Medarde M, Shi M, Chang J and Shang T 2021 Phys. Rev. Lett. 126 076602 [36] Funahashi S, Nozaki H and Kawada H 1981 J. Phys. Chem. Solids 42 1009 [37] Zhao J J, Jiang B Y, Zhang S, Wang L J Y, Liu E, Li Z L and Wu X S 2023 Phys. Rev. B 107 085203 [38] Fleury P A 1969 Phys. Rev. 180 591 [39] Schindler A I and LaRoy B C 1971 Solid State Commun. 9 1817 [40] Fujishiro Y, Kanazawa N, Kurihara R, Ishizuka H, Hori T, Yasin F S, Yu X, Tsukazaki A, Ichikawa M, Kawasaki M, Nagaosa N, Tokunaga M and Tokura Y 2021 Nat. Commun. 12 317 [41] Koch K 2016 Z. Naturforsch. A 10 496 [42] Nandy S, Sharma G, Taraphder A and Tewari S 2017 Phys. Rev. Lett. 119 176804 [43] Li L Y, Yi E K, Wang B, Yu G Q, Shen B, Yan Z B and Wang M 2023 npj Quantum Mater. 8 2 [44] Liu M R, Yue J N, Meng J C, Shao T N, Yao C L, Sun X J, Nie J C and Li D B 2023 Appl. Phys. Lett. 122 022402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|