CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Theoretical characterization of the temperature-dependent saturation magnetization of magnetic metallic materials |
Jin-Long Wu(吴金龙)1,2, Pan Dong(董攀)2, Yi He(贺屹)3, Yan-Li Ma(马艳丽)2, Zi-Yuan Li(李梓源)2, Qin-Yuan Yao(姚沁远)2, Jun Qiu(邱俊)2, Jian-Zuo Ma(麻建坐)1,2,4, and Wei-Guo Li(李卫国)1,2,† |
1 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2 College of Aerospace Engineering, Chongqing University, Chongqing 400044, China; 3 College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China; 4 College of Mechanical Engineering and Automation, Chongqing Industry Polytechnic Colleg, Chongqing 401120, China |
|
|
Abstract Based on the force-heat equivalence energy density principle, a theoretical model for magnetic metallic materials is developed, which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy; then the relationship between the magnetic anisotropy constant and saturation magnetization is considered. Finally, we formulate a temperature-dependent model for saturation magnetization, revealing the inherent relationship between temperature and saturation magnetization. Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures, exhibiting satisfactory agreement with experimental data. Additionally, the experimental data used as reference points are at or near room temperature. Compared to other phenomenological theoretical models, this model is considerably more accessible than the data required at 0 K. The index included in our model is set to a constant value, which is equal to $10/3$ for materials other than Fe, Co, and Ni. For transition metals (Fe, Co, and Ni in this paper), the index is 6 in the range of 0 K to 0.65$T_{\rm cr}$ ($T_{\rm cr}$ is the critical temperature), and 3 in the range of 0.65$T_{\rm cr}$ to $T_{\rm cr}$, unlike other models where the adjustable parameters vary according to each material. In addition, our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures.
|
Received: 04 February 2024
Revised: 02 April 2024
Accepted manuscript online: 03 April 2024
|
PACS:
|
75.20.En
|
(Metals and alloys)
|
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
Fund: Project supported by the Natural Science Foundation of Chongqing (Grant No. CSTB2022NSCQ-MSX0391). |
Corresponding Authors:
Wei-Guo Li
E-mail: wgli@cqu.edu.cn
|
Cite this article:
Jin-Long Wu(吴金龙), Pan Dong(董攀), Yi He(贺屹), Yan-Li Ma(马艳丽), Zi-Yuan Li(李梓源), Qin-Yuan Yao(姚沁远), Jun Qiu(邱俊), Jian-Zuo Ma(麻建坐), and Wei-Guo Li(李卫国) Theoretical characterization of the temperature-dependent saturation magnetization of magnetic metallic materials 2024 Chin. Phys. B 33 077502
|
[1] Zhang Y, Wang Z and Cao J 2013 J. Appl. Phys. 113 017203 [2] Plumer M L, Van Ek J and Weller D 2001 The physics of ultra-highdensity magnetic recording (Vol. 41) (Japan: Springer Science & Business Media) [3] Parkin S S, Hayashi M and Thomas L J S 2008 Science 320 190 [4] Wolf S, Awschalom D, Buhrman R, Daughton J, Von Molnár S and Roukes M 2001 Science. 294 1488 [5] Matsuura Y 2006 J. Magn. Magn. Mater. 303 344 [6] Liu S J 2019 Chin. Phys. B 28 017501 [7] Riley M, Walmsley A and Speight J 2002 Mater. Sci. Tech. 18 112 [8] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S and Liu J P 2011 Adv. Mater. 23 821 [9] Fingers R T and Rubertus C S 2000 IEEE T. Magn. 36 3373 [10] Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T and Schultz L 2006 Acta Mater. 54 997 [11] Provenza A J, Montague G T, Jansen M J and Palazzolo A B 2005 J. Eng. Gas. Turbines. Power. 127 437 [12] Zverev V, Pyatakov A, Shtil A and Tishin A 2018 J. Magn. Magn. Mater. 459 182 [13] Jordan A, Scholz R, Wust P, Fähling H and Felix R 1999 J. Magn. Magn. Mater. 201 413 [14] Kok M, Qadir R A and Mohammed S S 2022 Eur. Phys. J. Plus 137 62 [15] Lu H, Zheng W and Jiang Q 2007 J. Phys. D: Appl. Phys. 40 320 [16] Evans R F L, Atxitia U and Chantrell R W 2015 Phys. Rev. B 91 144425 [17] Diop L, Kuz’min M, Skokov K, Karpenkov D Y and Gutfleisch O 2016 Phys. Rev. B 94 144413 [18] Crangle J and Goodman 1971 Proc. Roy. Soc. Lond. A Math. Phys. Sci. 321 477 [19] Bloch F 1930 Zeitschrift. für Physik. 61 206 [20] Bastardis R, Atxitia U, Chubykalo-Fesenko O and Kachkachi H 2012 Phys. Rev. B 86 094415 [21] Chikazumi S and Graham C D 1997 Physics of ferromagnetism (Vol. 94) (London: Oxford University Press) [22] Kuz’min 2005 Phys. Rev. Lett. 94 107204 [23] Callen E and Callen H 1965 J. Appl. Phys. 36 1140 [24] Zhang X, Liu L and Liu W 2013 Sci. Rep-Uk. 3 2908 [25] Jiang Z, Li R, Zhang S and Liu W 2005 Phys. Rev. B 72 045201 [26] Chen Y, Tao H, Yao D and Liu W 2012 Phys. Rev. Lett. 108 246402 [27] Li W, Yang F and Fang D 2010 Acta Mech. Sinica-Pcr. 26 235 [28] Li W, Zhang X, Kou H, Wang R and Fang D 2016 Int. J. Mech. Sci. 105 273 [29] He Y, Li W, Yang M, Li Y and Zhang X 2022 J. Constr. Steel. Res. 191 107184 [30] He Y, Li W, Yang M, Zhao Z, Zhang X and Dong P 2022 Int. J. Fatigue. 161 106896 [31] Geng P, Li W, Zhang X, Deng Y, Kou H and Ma J 2017 J. Alloys Compd. 706 340 [32] Zhang X, Li W, Deng Y, Shao J, Kou H and Ma J 2018 J. Phys. D: Appl. Phys. 51 075308 [33] Zhang X, Li W, Kou H, Shao J, Deng Y and Zhang X 2019 J. Appl. Phys. 125 18 [34] Zhang X, Li W, Ma J, Li Y and Zhang X 2021 J. Alloys Compd. 851 156747 [35] Dong P, Zhang X, Ma Y, He Y, Yang J and Li W 2023 Met. Mater. Int. 30 1041 [36] Geng P, Li W, Zhang X, Zhang X, Deng Y and Kou H 2017 J. Phys. D: Appl. Phys. 50 40 [37] Geng P, Li W, Zhang X, Deng Y, Kou H and Chen L 2018 J. Appl. Phys. 124 035703 [38] Zhang X, Li W, Deng Y, Shao J, Geng P and Zhang X 2018 Mater. Res. Express 6 015904 [39] Mørup S, Hansen MF and Frandsen C 2010 Beilstein. J. Nanotech. 1 182 [40] Buschow K H J 1977 Rep. Prog. Phys. 40 1179 [41] Stier M, Neumann A, Philippi-Kobs A, Oepen H P and Thorwart M 2018 J. Magn. Magn. Mater. 447 100 [42] Durst K D and Kronmüller H 1986 J. Magn. Magn. Mater. 59 86 [43] Xiao Y, Morvan F, He A, Wang M and Luo H 2020 Jiao R. Appl. Phys. Lett. 117 13 [44] Konar B 2012 Critical evaluation and thermodynamic optimization of the iron-rare-earth systems (Canada: McGill University) [45] Mandal K, Yan A, Kerschl P, Handstein A, Gutfleisch O and Müller K J 2004 J. Phys. D: Appl. Phys. 37 2628 [46] Gray D E and Henry W 1957 Phys. Today 10 36 [47] Pauthenet R 1982 J. Appl. Phys. 53 8187 [48] Weiss P and Forrer R 1925 Ann. Physique. 10 153 [49] Kuz’min M, Chernyshov A, Pecharsky V, Gschneidner Jr K and Tishin A 2006 Phys. Rev. B 73 132403 [50] Amitin E, Bessergenev W, Kovalevskaya Y A and Paukov I 1983 J. Chem. Thermodynamics 15 181 [51] Jennings L, Stanton R and Spedding F 1957 J. Chem. Phys. 27 909 [52] Koyama K, Fujii H and Canfield P C 1996 Physica B 226 363 [53] Hanindriyo A T 2021 Ab initio assessment of computational thermodynamics applied to magnetic alloys (Japan: Japan Advanced Institute of Science and Technology) [54] Buschow K H J and Boer F R 2003 Physics of magnetism and magnetic materials (Vol. 7) (New York: Kluwer Academic/Plenum Publishers) [55] Callen H B and Callen E 1966 J. Phys. Chem. Solids. 27 1271 [56] Van vleck J H 1937 Phys. Rev. 52 1178 [57] Zener C 1954 Phys. Rev. 96 1335 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|