Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077502    DOI: 10.1088/1674-1056/ad39d1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical characterization of the temperature-dependent saturation magnetization of magnetic metallic materials

Jin-Long Wu(吴金龙)1,2, Pan Dong(董攀)2, Yi He(贺屹)3, Yan-Li Ma(马艳丽)2, Zi-Yuan Li(李梓源)2, Qin-Yuan Yao(姚沁远)2, Jun Qiu(邱俊)2, Jian-Zuo Ma(麻建坐)1,2,4, and Wei-Guo Li(李卫国)1,2,†
1 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China;
2 College of Aerospace Engineering, Chongqing University, Chongqing 400044, China;
3 College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China;
4 College of Mechanical Engineering and Automation, Chongqing Industry Polytechnic Colleg, Chongqing 401120, China
Abstract  Based on the force-heat equivalence energy density principle, a theoretical model for magnetic metallic materials is developed, which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy; then the relationship between the magnetic anisotropy constant and saturation magnetization is considered. Finally, we formulate a temperature-dependent model for saturation magnetization, revealing the inherent relationship between temperature and saturation magnetization. Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures, exhibiting satisfactory agreement with experimental data. Additionally, the experimental data used as reference points are at or near room temperature. Compared to other phenomenological theoretical models, this model is considerably more accessible than the data required at 0 K. The index included in our model is set to a constant value, which is equal to $10/3$ for materials other than Fe, Co, and Ni. For transition metals (Fe, Co, and Ni in this paper), the index is 6 in the range of 0 K to 0.65$T_{\rm cr}$ ($T_{\rm cr}$ is the critical temperature), and 3 in the range of 0.65$T_{\rm cr}$ to $T_{\rm cr}$, unlike other models where the adjustable parameters vary according to each material. In addition, our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures.
Keywords:  magnetic metallic materials      temperature dependent      saturation magnetization      modeling  
Received:  04 February 2024      Revised:  02 April 2024      Accepted manuscript online:  03 April 2024
PACS:  75.20.En (Metals and alloys)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
Fund: Project supported by the Natural Science Foundation of Chongqing (Grant No. CSTB2022NSCQ-MSX0391).
Corresponding Authors:  Wei-Guo Li     E-mail:  wgli@cqu.edu.cn

Cite this article: 

Jin-Long Wu(吴金龙), Pan Dong(董攀), Yi He(贺屹), Yan-Li Ma(马艳丽), Zi-Yuan Li(李梓源), Qin-Yuan Yao(姚沁远), Jun Qiu(邱俊), Jian-Zuo Ma(麻建坐), and Wei-Guo Li(李卫国) Theoretical characterization of the temperature-dependent saturation magnetization of magnetic metallic materials 2024 Chin. Phys. B 33 077502

[1] Zhang Y, Wang Z and Cao J 2013 J. Appl. Phys. 113 017203
[2] Plumer M L, Van Ek J and Weller D 2001 The physics of ultra-highdensity magnetic recording (Vol. 41) (Japan: Springer Science & Business Media)
[3] Parkin S S, Hayashi M and Thomas L J S 2008 Science 320 190
[4] Wolf S, Awschalom D, Buhrman R, Daughton J, Von Molnár S and Roukes M 2001 Science. 294 1488
[5] Matsuura Y 2006 J. Magn. Magn. Mater. 303 344
[6] Liu S J 2019 Chin. Phys. B 28 017501
[7] Riley M, Walmsley A and Speight J 2002 Mater. Sci. Tech. 18 112
[8] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S and Liu J P 2011 Adv. Mater. 23 821
[9] Fingers R T and Rubertus C S 2000 IEEE T. Magn. 36 3373
[10] Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T and Schultz L 2006 Acta Mater. 54 997
[11] Provenza A J, Montague G T, Jansen M J and Palazzolo A B 2005 J. Eng. Gas. Turbines. Power. 127 437
[12] Zverev V, Pyatakov A, Shtil A and Tishin A 2018 J. Magn. Magn. Mater. 459 182
[13] Jordan A, Scholz R, Wust P, Fähling H and Felix R 1999 J. Magn. Magn. Mater. 201 413
[14] Kok M, Qadir R A and Mohammed S S 2022 Eur. Phys. J. Plus 137 62
[15] Lu H, Zheng W and Jiang Q 2007 J. Phys. D: Appl. Phys. 40 320
[16] Evans R F L, Atxitia U and Chantrell R W 2015 Phys. Rev. B 91 144425
[17] Diop L, Kuz’min M, Skokov K, Karpenkov D Y and Gutfleisch O 2016 Phys. Rev. B 94 144413
[18] Crangle J and Goodman 1971 Proc. Roy. Soc. Lond. A Math. Phys. Sci. 321 477
[19] Bloch F 1930 Zeitschrift. für Physik. 61 206
[20] Bastardis R, Atxitia U, Chubykalo-Fesenko O and Kachkachi H 2012 Phys. Rev. B 86 094415
[21] Chikazumi S and Graham C D 1997 Physics of ferromagnetism (Vol. 94) (London: Oxford University Press)
[22] Kuz’min 2005 Phys. Rev. Lett. 94 107204
[23] Callen E and Callen H 1965 J. Appl. Phys. 36 1140
[24] Zhang X, Liu L and Liu W 2013 Sci. Rep-Uk. 3 2908
[25] Jiang Z, Li R, Zhang S and Liu W 2005 Phys. Rev. B 72 045201
[26] Chen Y, Tao H, Yao D and Liu W 2012 Phys. Rev. Lett. 108 246402
[27] Li W, Yang F and Fang D 2010 Acta Mech. Sinica-Pcr. 26 235
[28] Li W, Zhang X, Kou H, Wang R and Fang D 2016 Int. J. Mech. Sci. 105 273
[29] He Y, Li W, Yang M, Li Y and Zhang X 2022 J. Constr. Steel. Res. 191 107184
[30] He Y, Li W, Yang M, Zhao Z, Zhang X and Dong P 2022 Int. J. Fatigue. 161 106896
[31] Geng P, Li W, Zhang X, Deng Y, Kou H and Ma J 2017 J. Alloys Compd. 706 340
[32] Zhang X, Li W, Deng Y, Shao J, Kou H and Ma J 2018 J. Phys. D: Appl. Phys. 51 075308
[33] Zhang X, Li W, Kou H, Shao J, Deng Y and Zhang X 2019 J. Appl. Phys. 125 18
[34] Zhang X, Li W, Ma J, Li Y and Zhang X 2021 J. Alloys Compd. 851 156747
[35] Dong P, Zhang X, Ma Y, He Y, Yang J and Li W 2023 Met. Mater. Int. 30 1041
[36] Geng P, Li W, Zhang X, Zhang X, Deng Y and Kou H 2017 J. Phys. D: Appl. Phys. 50 40
[37] Geng P, Li W, Zhang X, Deng Y, Kou H and Chen L 2018 J. Appl. Phys. 124 035703
[38] Zhang X, Li W, Deng Y, Shao J, Geng P and Zhang X 2018 Mater. Res. Express 6 015904
[39] Mørup S, Hansen MF and Frandsen C 2010 Beilstein. J. Nanotech. 1 182
[40] Buschow K H J 1977 Rep. Prog. Phys. 40 1179
[41] Stier M, Neumann A, Philippi-Kobs A, Oepen H P and Thorwart M 2018 J. Magn. Magn. Mater. 447 100
[42] Durst K D and Kronmüller H 1986 J. Magn. Magn. Mater. 59 86
[43] Xiao Y, Morvan F, He A, Wang M and Luo H 2020 Jiao R. Appl. Phys. Lett. 117 13
[44] Konar B 2012 Critical evaluation and thermodynamic optimization of the iron-rare-earth systems (Canada: McGill University)
[45] Mandal K, Yan A, Kerschl P, Handstein A, Gutfleisch O and Müller K J 2004 J. Phys. D: Appl. Phys. 37 2628
[46] Gray D E and Henry W 1957 Phys. Today 10 36
[47] Pauthenet R 1982 J. Appl. Phys. 53 8187
[48] Weiss P and Forrer R 1925 Ann. Physique. 10 153
[49] Kuz’min M, Chernyshov A, Pecharsky V, Gschneidner Jr K and Tishin A 2006 Phys. Rev. B 73 132403
[50] Amitin E, Bessergenev W, Kovalevskaya Y A and Paukov I 1983 J. Chem. Thermodynamics 15 181
[51] Jennings L, Stanton R and Spedding F 1957 J. Chem. Phys. 27 909
[52] Koyama K, Fujii H and Canfield P C 1996 Physica B 226 363
[53] Hanindriyo A T 2021 Ab initio assessment of computational thermodynamics applied to magnetic alloys (Japan: Japan Advanced Institute of Science and Technology)
[54] Buschow K H J and Boer F R 2003 Physics of magnetism and magnetic materials (Vol. 7) (New York: Kluwer Academic/Plenum Publishers)
[55] Callen H B and Callen E 1966 J. Phys. Chem. Solids. 27 1271
[56] Van vleck J H 1937 Phys. Rev. 52 1178
[57] Zener C 1954 Phys. Rev. 96 1335
[1] Calculation and prediction of divertor detachment via impurity seeding by using one-dimensional model
Wen-Jie Zhou(周文杰), Xiao-Ju Liu(刘晓菊), Xiao-He Wu(邬潇河), Bang Li(李邦), Qi-Qi Shi(石奇奇), Hao-Chen Fan(樊皓尘), Yan-Jie Yang(杨艳杰), and Guo-Qiang Li(李国强). Chin. Phys. B, 2024, 33(8): 085205.
[2] Integrated analysis of plasma rotation effect on HL-3 hybrid scenario
Miao Xue(薛淼), Guo-Yao Zheng(郑国尧), Lei Xue(薛雷), Jia-Xian Li(李佳鲜), Shuo Wang(王硕), Hai-Long Du(杜海龙), Yi-Ren Zhu(朱毅仁), and Yue Zhou(周月). Chin. Phys. B, 2024, 33(8): 084703.
[3] WT-FCTGN: A wavelet-enhanced fully connected time-gated neural network for complex noisy traffic flow modeling
Zhifang Liao(廖志芳), Ke Sun(孙轲), Wenlong Liu(刘文龙), Zhiwu Yu(余志武), Chengguang Liu(刘承光), and Yucheng Song(宋禹成). Chin. Phys. B, 2024, 33(7): 078901.
[4] A novel complex-high-order graph convolutional network paradigm: ChyGCN
He-Xiang Zheng(郑和翔), Shu-Yu Miao(苗书宇), and Chang-Gui Gu(顾长贵). Chin. Phys. B, 2024, 33(5): 058401.
[5] Static-to-kinematic modeling and experimental validation of tendon-driven quasi continuum manipulators with nonconstant subsegment stiffness
Xian-Jie Zheng(郑先杰), Meng Ding(丁萌), Liao-Xue Liu(刘辽雪), Lu Wang(王璐), and Yu Guo(郭毓). Chin. Phys. B, 2024, 33(1): 010703.
[6] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[7] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[8] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[9] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[10] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[11] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[12] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[13] An improved model of damage depth of shock-melted metal in microspall under triangular wave loading
Wen-Bin Liu(刘文斌), An-Min He(何安民), Kun Wang(王昆), Jian-Ting Xin(辛建婷), Jian-Li Shao(邵建立), Nan-Sheng Liu(刘难生), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 096202.
[14] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[15] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
No Suggested Reading articles found!