Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 068701    DOI: 10.1088/1674-1056/ad39ca
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups

Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕)†, and Yusong Tu(涂育松)‡
College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
Abstract  The hydroxyl-terminated self-assembled monolayer (OH-SAM), as a surface resistant to protein adsorption, exhibits substantial potential in applications such as ship navigation and medical implants, and the appropriate strategies for designing anti-fouling surfaces are crucial. Here, we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities ($\varSigma = 2.0 $nm$^{-2}$, 4.5nm$^{-2}$, and 6.5nm$^{-2}$), respectively. For the first time, we observed that the compactness and order of interfacial water enhance its physical barrier effect, subsequently enhancing the resistance of SAM to protein adsorption. Notably, the spatial hindrance effect of SAM leads to the embedding of protein into SAM, resulting in a lack of resistance of SAM towards protein. Furthermore, the number of hydroxyl groups per unit area of double OH-terminated SAM at $\varSigma = 6.5 $nm$^{-2}$ is approximately 2 to 3 times that of single OH-terminated SAM at $\varSigma = 6.5 $nm$^{-2}$ and 4.5nm$^{-2}$, consequently yielding a weaker resistance of double OH-terminated SAM towards protein. Meanwhile, due to the structure of SAM itself, i.e., the formation of a nearly perfect ice-like hydrogen bond structure, the SAM exhibits the weakest resistance towards protein. This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption, especially the traditional barrier effect of interfacial water.
Keywords:  molecular dynamics simulation      self-assembled monolayer      resistance to protein adsorption      hydrogen bond      interfacial water  
Received:  21 February 2024      Revised:  16 March 2024      Accepted manuscript online:  03 April 2024
PACS:  87.10.Tf (Molecular dynamics simulation)  
  64.75.Yz (Self-assembly)  
  87.15.K- (Molecular interactions; membrane-protein interactions)  
  68.08.-p (Liquid-solid interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grants No. 12075201), the Science and Technology Planning Project of Jiangsu Province, China (Grant No. BK20201428), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21 3193), and the Special Program for Applied Research on Supercomputation of the NSFC-Guangdong Joint Fund (the second phase).
Corresponding Authors:  Yuan-Yan Wu, Yusong Tu     E-mail:  yywu@yzu.edu.cn;ystu@yzu.edu.cn

Cite this article: 

Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松) Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups 2024 Chin. Phys. B 33 068701

[1] Jain A and Bhosle N B 2009 Biofouling 25 13
[2] Ma C, Yang H, Zhou X, Wu B and Zhang G 2012 Colloid Surface B 100 31
[3] Li X, Li S, Huang X, Chen Y, Cheng J and Zhan A 2021 Mar. Environ. Res. 170 105409
[4] de Carvalho C C C R 2018 Front. Mar. Sci. 5 126
[5] Martins M C L, Fonseca C, Barbosa M A and Ratner B D 2003 Biomaterials 24 3697
[6] Choi S, Yang Y and Chae J 2008 Biosens. Bioelectron. 24 893
[7] Guo J, Zhang P, Chen Y, Shen Y, Hu X, Yan P, Yang J, Fang F, Li C, Gao X and Wang G 2015 Chem. Eng. J. 279 516
[8] Miyake T, Tanii T, Kato K, Zako T, Funatsu T and Ohdomari I 2007 Nanotechnology 18 305304
[9] Huang S, Hou Q, Guo D, Yang H, Chen T, Liu F, Hu G, Zhang M, Zhang J and Wang J 2017 RSC. Adv. 7 39530
[10] Zhao J, Wang Q, Liang G and Zheng J 2011 Langmuir 27 14876
[11] Wang Q, Zhao C, Zhao J, Wang J, Yang J C, Yu X and Zheng J 2010 Langmuir 26 3308
[12] Peng C, Liu J, Zhao D and Zhou J 2014 Langmuir 30 11401
[13] Li M, Xie Y, Lin F R, Li Z, Yang S and Jen A K 2023 Innovation 4 100369
[14] Wang Q, Zhao J, Yu X, Zhao C, Li L and Zheng J 2010 Langmuir 26 12722
[15] Mao D, Wang X, Wu Y, Gu Z, Wang C and Tu Y 2021 Nanoscale 13 19604
[16] Mao D, Wu Y Y and Tu Y 2023 Phys. Chem. Chem. Phys. 25 21376
[17] Zhang Z and Dai J 2024 Innovation 5 100595
[18] Shenogina N, Godawat R, Keblinski P and Garde S 2009 Phys. Rev. Lett. 102 156101
[19] Guo P, Tu Y, Yang J, Wang C, Sheng N and Fang H 2015 Phys. Rev. Lett. 115 186101
[20] Chen Z, Qi C, Teng X, Zhou B and Wang C 2021 Commun. Theor. Phys. 73 115501
[21] Qu M, Huang G, Liu X, Nie X, Qi C, Wang H, Hu J, Fang H, Gao Y, Liu W T, Francisco J S and Wang C 2022 Chem. Sci. 13 10546
[22] Miao W, Tian Y and Jiang L 2022 Acc. Chem. Res. 55 1467
[23] Tian Y and Jiang L 2013 Nat. Mater. 12 291
[24] Jakob M, Lubkowski J, O’Keefe B R and Wlodawer A 2015 Acta Crystallogr F. 71 1429
[25] He C, Zhang H, Lin C, Wang L and Yuan S 2017 Chem. Phys. Lett. 676 144
[26] Fan X, Fang Y, Zhou W, Yan L, Xu Y, Zhu H and Liu H 2021 Mater. Horiz. 8 997
[27] Ou X, Xue B, Lao Y, Wutthinitikornkit Y, Tian R, Zou A, Yang L, Wang W, Cao Y and Li J 2020 Sci. Adv. 6 eabb7620
[28] Xuan Z, Li J, Liu Q, Yi F, Wang S and Lu W 2021 Innovation 2 100081
[29] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[30] Azam F, Eid E E M and Almutairi A 2021 J. Mol. Struct. 1246 131124
[31] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
[32] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 Software X 1-2 19
[33] Jorgensen W L, Maxwell D S and Tirado-Rives J 1996 J. Am. Chem. Soc. 118 11225
[34] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[35] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[36] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463
[37] Aldeghi M, Heifetz A, Bodkin M J, Knapp S and Biggin P C 2016 Chem. Sci. 7 207
[38] Mobley D L, Chodera J D and Dill K A 2006 J. Chem. Phys. 125 084902
[39] Beutler T C, Mark A E, van Schaik R C, Gerber P R and van Gunsteren W F 1994 Chem. Phys. Lett. 222 529
[40] Pastor R W, Brooks B R and Szabo A 2006 Mol. Phys. 65 1409
[41] Shirts M R and Chodera J D 2008 J. Chem. Phys. 129 124105
[42] Luan B, Huynh T, Zhao L and Zhou R 2015 ACS Nano 9 663
[43] Ye R, Song W, Feng M and Zhou R 2021 Nanoscale 13 19255
[44] Feng M, Kang H, Yang Z, Luan B and Zhou R 2016 J. Chem. Phys. 144 225102
[45] Mao D, Wang X, Zhou G, Zeng S, Chen L, Chen J and Dai C 2019 Chin. Phys. Lett. 36 103101
[46] Tu Y, Lu H, Zhang Y, Huynh T and Zhou R 2013 J. Chem. Phys. 138 015104
[47] Tu Y, Zhou R and Fang H 2010 Nanoscale 2 1976
[48] Tu Y, Xiu P, Wan R, Hu J, Zhou R and Fang H 2009 Proc. Natl. Acad. Sci. USA 106 18120
[1] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[2] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[3] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[4] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[5] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[6] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[7] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[8] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[9] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[10] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[11] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[12] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[13] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[14] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[15] Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青). Chin. Phys. B, 2023, 32(10): 108701.
No Suggested Reading articles found!