Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 068702    DOI: 10.1088/1674-1056/ad3228
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Coexisting fast-slow dendritic traveling waves in a 3D-array electric field coupled neuronal network

Xile Wei(魏熙乐)1, Zeyu Ren(任泽宇)1, Meili Lu(卢梅丽)2, Yaqin Fan(樊亚琴)1, and Siyuan Chang(常思远)1,†
1 The Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;
2 School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300074, China
Abstract  Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues, which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate (NMDA)-dependent wave with a speed of about 0.1m/s and the Ca-dependent wave with a speed of about 0.009m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.
Keywords:  hippocampal network      epileptiform      dendritic oscillation      traveling wave      electric field coupling  
Received:  15 December 2023      Revised:  05 March 2024      Accepted manuscript online:  11 March 2024
PACS:  87.19.lq (Neuronal wave propagation)  
  87.19.ll (Models of single neurons and networks)  
  87.19.lj (Neuronal network dynamics)  
  07.05.Tp (Computer modeling and simulation)  
Fund: This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 62171312 and 61771330) and the Tianjin Municipal Education Commission Scientific Research Project (Grant No. 2020KJ114).
Corresponding Authors:  Siyuan Chang     E-mail:  changsiyuan@tju.edu.cn

Cite this article: 

Xile Wei(魏熙乐), Zeyu Ren(任泽宇), Meili Lu(卢梅丽), Yaqin Fan(樊亚琴), and Siyuan Chang(常思远) Coexisting fast-slow dendritic traveling waves in a 3D-array electric field coupled neuronal network 2024 Chin. Phys. B 33 068702

[1] Dehnavi F, Koo-Poeggel P C, Ghorbani M and Marshall L 2021 Sleep 44 zsab127
[2] Helfrich R F, Lendner J D, Mander B A, et al. 2019 Nat. Commun. 10 3572
[3] Gloveli T, Dugladze T, Rotstein H G, Traub R D, Monyer H, Heinemann U, Whittington M A and Kopell N J 2005 Proc. Natl. Acad. Sci. USA 102 067901
[4] Eliasmith C, Stewart T C, Choo X, Bekolay T, DeWolf T, Tang C and Rasmussen D 2022 Science 338 1202
[5] Faber D S and Korn H 1989 Physiol. Rev. 338 1202
[6] Antic S D, Zhou W, Moore A R, Short S M and Ikonomu K D 2010 J. Neurosci. Res. 88 080201
[7] Rozental R, Andrade-Rozental A F, Zheng X, Urban M, Spray D C and Chiu F C 2001 Dev. Neurosci. 23 056302
[8] Qiu C, Shivacharan R S, Zhang M M and Durand D M 2022 J. Neurosci. 35 040706
[9] Remme M W H, Lengyel M and Gutkin B S 2009 PLoS Comput. Biol. 5 e1000493
[10] Zhang M M, Shivacharan R S, Chiang C C, Gonzalez-Reyes L E and Durand D M 2016 J. Neurosci. 36 118104
[11] Chiang C C, Shivacharan R S, Wei X L, Gonzalez-Reyes L E and Durand D M 2016 J. Physiol.-London 597 118104
[12] Chiang C C, Wei X L, Ananthakrishnan A K, Shivacharan R S, Gonzalez-Reyes L E, Zhang M M and Durand D M 2018 Sci. Rep. 8 118104
[13] Diba K 2021 Neuron 109 3071
[14] Magee J C 1998 J. Neurosci. 18 7613
[15] Warman E N, Grill W M and Durand D 1992 IEEE Trans. Biomed. Eng. 39 1244
[16] Swietlik D, Bialowas J, Morys J, Klejbor I and Kusiak A 2019 Molecules 24 118104
[17] Swietlik D, Bialowas J, Morys J, Klejbor I and Kusiak A 2019 Entropy 21 118104
[18] Ghori, Muhammad B, Kang Y and Chen Y Q 2022 J. Comput. Neurosci. 50 040706
[19] Cutsuridis, Vassilis and Wennekers T 2016 Neural Netw. 22 118104
[20] Shivacharan R S, Chiang C C, Zhang M M, Gonzalez-Reyes L E and Durand D M 2019 Exp. Neurol. 317 118104
[21] Bertolino A, Rubino V, Sarnbataro F, Blasi G, Latorre V, Fazio L and Caforio 2016 Biol. Psychiatry 60 118104
[22] Depannemaecker D, Canton S, Luiz E, Rodrigues A M, Scorza C A, Scorza F A and de Almeida A G 2020 Neural Netw. 122 118104
[23] Shivacharan R S, Chiang C C, Wei X L, Subramanian M, Couturier N H, PakalapatiN and Durand D M 2021 Epilepsia 62 118104
[24] Martinet L E, Fiddyment G, Madsen J R and Eskandar E N 2016 Nat. Commun. 8 118104
[25] Lian J, Bikson M, Shuai J and Durand D M 2001 J. Physiol.-London 537 118104
[26] Kibler A B and Durand D M 2011 Epilepsia 52 118104
[27] Colgin L L 2016 Nat. Rev. Neurosci. 17 118104
[28] Schiller J, Major G, Koester H J and Schiller Y 2000 Nature 404 118104
[29] Buzsaki G 2005 Hippocampus 15 118104
[30] Cole S R and Voytek B 2017 Trends Cogn. Sci. 21 118104
[31] Saleh M, Reimer J, Penn R, Ojakangas C L and Hatsopoulos N G 2010 Neuron 65 118104
[32] Choksi B, Mozafari M, VanRullen R and Reddy L 2022 Neural Netw. 154 118104
[1] Harmonic balance simulation of the influence of component uniformity and reliability on the performance of a Josephson traveling wave parametric amplifier
Yuzhen Zheng(郑煜臻), Kanglin Xiong(熊康林), Jiagui Feng(冯加贵), and Hui Yang(杨辉). Chin. Phys. B, 2024, 33(4): 040401.
[2] Higher-dimensional Chen—Lee—Liu equation and asymmetric peakon soliton
Qiao-Hong Han(韩巧红) and Man Jia(贾曼). Chin. Phys. B, 2024, 33(4): 040202.
[3] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[4] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[5] Forward-wave enhanced radiation in the terahertz electron cyclotron maser
Zi-Chao Gao(高子超), Chao-Hai Du(杜朝海), Fan-Hong Li(李繁弘), Zi-Wen Zhang(张子文), Si-Qi Li(李思琦), and Pu-Kun Liu(刘濮鲲). Chin. Phys. B, 2022, 31(12): 128401.
[6] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[7] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[8] Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation
Ming Song(宋明)†, Beidan Wang(王贝丹), and Jun Cao(曹军). Chin. Phys. B, 2020, 29(10): 100206.
[9] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[10] One-dimensional mass transport with dynamic external potentials
Xingxing Zhang(张星星), Dongqin Zheng(郑冬琴), Weirong Zhong(钟伟荣). Chin. Phys. B, 2019, 28(2): 020505.
[11] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[12] Closed-loop control of epileptiform activities in a neural population model using a proportional-derivative controller
Wang Jun-Song (王俊松), Wang Mei-Li (王美丽), Li Xiao-Li (李小俚), Ernst Niebur. Chin. Phys. B, 2015, 24(3): 038701.
[13] Homotopic mapping solitary traveling wave solutions for the disturbed BKK mechanism physical model
Zhou Xian-Chun (周先春), Shi Lan-Fang (石兰芳), Han Xiang-Lin (韩祥临), Mo Jia-Qi (莫嘉琪). Chin. Phys. B, 2014, 23(9): 090204.
[14] On the exact solutions to the long–short-wave interaction system
Fan Hui-Ling (范慧玲), Fan Xue-Fei (范雪飞), Li Xin (李欣). Chin. Phys. B, 2014, 23(2): 020201.
[15] Control of epileptiform spikes based on nonlinear unscented Kalman filter
Liu Xian (刘仙), Gao Qing (高庆), Li Xiao-Li (李小俚). Chin. Phys. B, 2014, 23(1): 010202.
No Suggested Reading articles found!