Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 068104    DOI: 10.1088/1674-1056/ad322f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Bimodal growth of Fe islands on graphene

Yi-Sheng Gu(顾翊晟)1, Qiao-Yan Yu(俞俏滟)1, Dang Liu(刘荡)1, Ji-Ce Sun(孙蓟策)1, Rui-Jun Xi(席瑞骏)1, Xing-Sen Chen(陈星森)1, Sha-Sha Xue(薛莎莎)1, Yi Zhang(章毅)1, Xian Du(杜宪)1, Xu-Hui Ning(宁旭辉)1, Hao Yang(杨浩)1, Dan-Dan Guan(管丹丹)1, Xiao-Xue Liu(刘晓雪)1, Liang Liu(刘亮)1, Yao-Yi Li(李耀义)1, Shi-Yong Wang(王世勇)1, Can-Hua Liu(刘灿华)1, Hao Zheng(郑浩)1,†, and Jin-Feng Jia(贾金锋)1,2,3,‡
1 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
3 Quantum Science Center of Guangdong——Hong Kong——Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
Abstract  Magnetic metals deposited on graphene hold the key to applications in spintronics. Here, we present the results of Fe islands grown on graphene/SiC(0001) by molecular beam epitaxy, which are investigated by scanning tunneling microscopy. The two types of islands distinguished by flat or round tops are revealed, indicating bimodal growth of Fe. The atomic structures on the top surfaces of flat islands are also clearly resolved. Our results may improve the understanding of the mechanisms of metals deposited on graphene and pave the way for future spintronic applications of Fe/graphene systems.
Keywords:  graphene      magnetism      molecular beam epitaxy      scanning tunneling microscopy  
Received:  18 February 2024      Revised:  08 March 2024      Accepted manuscript online:  11 March 2024
PACS:  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: We thank the Ministry of Science and Technology of China (Grant Nos. 2019YFA0308600 and 2020YFA0309000), the National Natural Science Foundation of China (Grant Nos. 92365302, 92065201, 22325203, 92265105, 12074247, and 12174252), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the Science and Technology Commission of Shanghai Municipality (Grant Nos. 2019SHZDZX01, 19JC1412701 and 20QA1405100) for financial support. We also acknowledge financial support from the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302500).
Corresponding Authors:  Hao Zheng, Jin-Feng Jia     E-mail:  haozheng1@sjtu.edu.cn;JfJia@sjtu.edu.cn

Cite this article: 

Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋) Bimodal growth of Fe islands on graphene 2024 Chin. Phys. B 33 068104

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V., Grigorieva I V and Firsov A D 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Peierls R 1935 Ann. l’institut Henri Poincar 5 177
[4] Mermin N D 1968 Phys. Rev. 176 250
[5] Wallace P R 1947 Phys. Rev. 71 622
[6] McClure J W 1957 Phys. Rev. 108 612
[7] Slonczewski J C and Weiss P R 1958 Phys. Rev. 109 272
[8] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[9] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[10] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[11] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
[12] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[13] Chen G 2022 Quantum Front. 1 8
[14] Liu Y W and He L 2023 Quantum Front. 2 2
[15] Pathak S, Shenoy V B and Baskaran G 2010 Phys. Rev. B 81 085431
[16] Nandkishore R, Levitov L S and Chubukov A V 2012 Nat. Phys. 8 158
[17] Jiang S, Mesaros A and Ran Y 2014 Phys. Rev. X 4 031040
[18] Ichinokura S, Sugawara K, Takayama A, Takahashi T and Hasegawa S 2016 ACS Nano 10 2761
[19] Toyama H, Akiyama R, Ichinokura S, Hashizume M, Iimori T, Endo Y, Hobara R, Matsui T, Horii K, Sato S, Hirahara T, Komori F and Hasegawa S 2022 ACS Nano 16 3582
[20] Wang X, Liu N, Wu Y, Qu Y, Zhang W, Wang J, Guan D, Wang S, Zheng H, Li Y, Liu C and Jia J 2022 Nano Lett. 22 7651
[21] Sevinçli H, Topsakal M, Durgun E and Ciraci S 2008 Phys. Rev. B 77 195434
[22] Uchoa B, Rappoport T G and Castro Neto A H 2011 Phys. Rev. Lett. 106 016801
[23] Liu X, Han Y, Evans J W, Engstfeld A K, Behm R J, Tringides M C, Hupalo M, Lin H Q, Huang L, Ho K M, Appy D, Thiel P A and Wang C Z 2015 Prog. Surf. Sci. 90 397
[24] Ren J, Guo H, Pan J, Zhang Y F, Yang Y, Wu X, Du S, Ouyang M and Gao H J 2017 Phys. Rev. Lett. 119 176806
[25] Baltic R, Pivetta M, Donati F, Wäckerlin C, Singha A, Dreiser J, Rusponi S and Brune H 2016 Nano Lett. 16 7610
[26] Ren J, Guo H, Pan J, Zhang Y F, Yang Y, Wu X, Du S, Ouyang M and Gao H J 2017 Phys. Rev. Lett. 119 176806
[27] Gao M, Han X, Liu W, Tian Z, Mei Y, Zhang M, Chu P K, Kan E, Hu T, Du Y, Qiao S and Di Z 2021 Sci. Adv. 7 eabg7054
[28] Gyamfi M, Eelbo T, Wásniowska M and Wiesendanger R 2011 Phys. Rev. B 84 113403
[29] Liu X, Wang C Z, Hupalo M, Lu W C, Thiel P A, Ho K M and Tringides M C 2011 Phys. Rev. B 84 235446
[30] Liu X, Hupalo M, Wang C Z, Lu W C, Thiel P A, Ho K M and Tringides M C 2012 Phys. Rev. B 86 081414
[31] Binz S M, Hupalo M, Liu X, Wang C Z, Lu W C, Thiel P A, Ho K M, Conrad E H and Tringides M C 2012 Phys. Rev. Lett. 109 026103
[32] Liu X, Wang C Z, Lin H Q, Hupalo M, Thiel P A, Ho K M and Tringides M C 2014 Phys. Rev. B 90 155444
[33] Liu W Q, Wang W Y, Wang J J, Wang F Q, Lu C, Jin F, Zhang A, Zhang Q M, Laan G Van Der, Xu Y B, Li Q X and Zhang R 2015 Sci. Rep. 5 11911
[34] Zhu Y, Pan Y F, Yang Z Q, Wei X Y, Hu J, Feng Y P, Zhang H and Wu R Q 2019 J. Phys. Chem. C 123 4441
[35] Kibria M T, Nakagawa T and Mizuno S 2020 Appl. Surf. Sci. 505 144209
[36] Xu H K, Li F, Fei F C, Wang L, Gu Y S, Liu D, Yu Q Y, Xue S S, Peng K, Chen B, Xie H K, Zhu Z, Guan D D, Wang S Y, Li Y, Liu C, Song F, Zheng H and Jia J F 2022 Quantum Front. 1 5
[37] Wang X, Chen C, Zhang T, Zhang T and Feng D 2022 Quantum Front. 1 12
[38] Liu W, Hu Q, Wang X, Zhong Y, Yang F, Kong L, Cao L, Li G, Peng Y, Okazaki K, Kondo T, Jin C, Xu J, Gao H J and Ding H 2022 Quantum Front. 1 20
[39] Wang Z, Liu L, Zhao M, Zheng H, Yang K, Wang C, Yang F, Wu H and Gao C 2022 Quantum Front. 1 16
[40] Wang G Y, Xie W, Xu D, Ma H Y, Yang H, Lu H, Sun H H, Li Y Y, Jia S, Fu L, Zhang S and Jia J F 2019 Nano Res. 12 569
[41] Yang B, Xia B, Chen H, Cai J, Yang H, Liu X, Liu L, Guan D, Wang S, Li Y, Zheng H, Liu C and Jia J 2023 Adv. Quantum Technol. 6 2300137
[42] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F and Xue Q K 2012 Science 335 52
[43] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2014 Nat. Mater. 14 285
[44] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C and Jia J F 2014 Phys. Rev. Lett. 112 217001
[45] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[46] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001
[47] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
[48] Yang H, Li Y Y, Liu T T, Xue H Y, Guan D D, Wang S Y, Zheng H, Liu C H, Fu L, Jia J F, Yang H, Li Y, Liu T, Xue H, Guan D, Wang S, Zheng H, Liu C, Jia J and Fu L 2019 Adv. Mater. 31 1905582
[49] Yao G, Duan M C, Liu N, Wu Y, Guan D D, Wang S, Zheng H, Li Y Y, Liu C and Jia J F 2019 Phys. Rev. Lett. 123 257001
[50] Xue H Y, Yang H, Wu Y F, Yao G, Guan D D, Wang S Y, Zheng H, Liu C H, Li Y Y and Jia J F 2019 Sci. China Physics, Mech. Astron. 62 76801
[51] Qin J, Zhao C, Xia B, Wang Z, Liu Y, Yang B, Guan D, Wang S, Li Y, Zheng H, Liu C and Jia J 2020 Appl. Surf. Sci. 512 145644
[52] Qin J, Zhao C, Xia B, Wang Z, Liu Y, Guan D, Wang S, Li Y, Zheng H, Liu C and Jia J 2020 Nanotechnology 31 305708
[53] Yang H, Li Y Y, Liu T T, Guan D D, Wang S Y, Zheng H, Liu C, Fu L and Jia J F 2020 Phys. Rev. Lett. 125 136802
[54] Zhu Z, Papaj M, Nie X A, Xu H K, Gu Y S, Yang X, Guan D, Wang S, Li Y, Liu C, Luo J, Xu Z A, Zheng H, Fu L and Jia J F 2021 Science 374 1381
[55] Zhao C, Li L, Zhang L, Qin J, Chen H, Xia B, Yang B, Zheng H, Wang S, Liu C, Li Y, Guan D, Cui P, Zhang Z and Jia J 2022 Phys. Rev. Lett. 128 206802
[56] Zang Y, Zhu K, Li L and He K 2022 Quantum Front. 1 11
[57] Zhang W, Wang X, Liu N, Wang J, Qu Y, Guan D D, Wang S, Zheng H, Li Y Y, Liu C and Jia J F 2023 Appl. Surf. Sci. 635 157768
[58] Yang B, Zhao C, Xia B, Ma H, Chen H, Cai J, Yang H, Liu X, Liu L, Guan D, Wang S, Li Y, Liu C, Zheng H and Jia J 2023 Quantum Front. 2 9
[59] Ding S, Zhao D, Jiang T, Wang H, Feng D and Zhang T 2023 Quantum Front. 2 3
[60] Huang H, Shen J, Chen J, Shen Q, Lin G, Zhu Z, Wu J, Ma J, Yang H, Liu X, Liu L, Guan D, Wang S, Li Y, Liu C, Zheng H, Lu Y and Jia J 2023 Quantum Front. 2 12
[61] Rahm J M and Erhart P 2020 J. Open Source Softw. 5 1944
[62] Skriver H L and Rosengaard N M 1992 Phys. Rev. B 46 7157
[63] Aldén M, Skriver H L, Mirbt S and Johansson B 1994 Surf. Sci. 315 157
[64] Błoński P and Kiejna A 2004 Vacuum 74 179
[65] Błoński P and Kiejna A 2007 Surf. Sci. 601 123
[66] Vitos L, Ruban A V, Skriver H L and Kollar J 1998 Surf. Sci. 411 186
[67] Kositski R and Mordehai D 2015 Acta Mater. 90 370
[68] Tran R, Xu Z, Radhakrishnan B, Winston D, Sun W, Persson K A and Ong S P 2016 Sci. Data 3 160080
[69] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
[70] Bethge H, Heuer D, Jensen C, Reshöft K and K öhler U 1995 Surf. Sci. 331-333 878
[71] Bode M, Pascal R, Dreyer M and Wiesendanger R 1996 Phys. Rev. B 54 R8385
[72] Ouazi S, Pohlmann T, Kubetzka A, Von Bergmann K and Wiesendanger R 2014 Surf. Sci. 630 280
[1] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
[2] Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field
A. Kalani, Alireza Amani, and M. A. Ramzanpour. Chin. Phys. B, 2024, 33(8): 080303.
[3] Effect of interlayer bonded bilayer graphene on friction
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良). Chin. Phys. B, 2024, 33(8): 086103.
[4] Controlled fabrication of freestanding monolayer SiC by electron irradiation
Yunli Da(笪蕴力), Ruichun Luo(罗瑞春), Bao Lei(雷宝), Wei Ji(季威), and Wu Zhou(周武). Chin. Phys. B, 2024, 33(8): 086802.
[5] Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy
Yumin Xia(夏玉敏), Ni Ma(马妮), Desheng Cai(蔡德胜), Yuzhou Liu(刘宇舟), Yitong Gu(谷易通), Gan Yu(于淦), Siyu Huo(霍思宇), Wenhui Pang(庞文慧), Chong Xiao(肖翀), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2024, 33(8): 086804.
[6] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1−xCo2Sn
Bo-wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[7] Magnetic and electrical transport properties in GdAlSi and SmAlGe
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙). Chin. Phys. B, 2024, 33(7): 077302.
[8] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[9] Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm)
Xingyu Yang(杨星宇), Qingqi Zeng(曾庆祺), Miao He(何苗), Xitong Xu(许锡童), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(7): 077501.
[10] Superconducting state in Ba(1-x)SrxNi2As2 near the quantum critical point
Chengfeng Yu(余承峰), Zongyuan Zhang(张宗源), Linxing Song(宋林兴), Yanwei Wu(吴彦玮), Xiaoqiu Yuan(袁小秋), Jie Hou(侯杰), Yubing Tu(涂玉兵), Xingyuan Hou(侯兴元), Shiliang Li(李世亮), and Lei Shan(单磊). Chin. Phys. B, 2024, 33(6): 066802.
[11] Field induced Chern insulating states in twisted monolayer-bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[12] Revisit of the anisotropic vortex states of 2H-NbSe2 towards the zero-field limit
Fan Zhang(张凡), Xingyuan Hou(侯兴元), Yuxuan Jiang(姜宇轩), Zongyuan Zhang(张宗源), Yubing Tu(涂玉兵), Xiangde Zhu(朱相德), Genfu Chen(陈根富), and Lei Shan(单磊). Chin. Phys. B, 2024, 33(6): 067401.
[13] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[14] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[15] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
No Suggested Reading articles found!