Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 054210    DOI: 10.1088/1674-1056/ad2dca
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable artificial plasmonic nanolaser with wide spectrum emission operating at room temperature

Peng Zhou(周鹏)1, Jia-Qi Guo(郭佳琦)2, Kun Liang(梁琨)1, Lei Jin(金磊)1, Xiong-Yu Liang(梁熊玉)1, Jun-Qiang Li(李俊强)1, Xu-Yan Deng(邓绪彦)1, Jian-Yu Qin(秦建宇)1, Jia-Sen Zhang(张家森)2,3, and Li Yu(于丽)1,†
1 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100876, China;
3 Peking University Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, China
Abstract  With the rapid development of information and communication technology, a key objective in the field of optoelectronic integrated devices is to reduce the nano-laser size and energy consumption. Photonics nanolasers are unable to exceed the diffraction limit and typically exhibit low modulation rates of several GHz. In contrast, plasmonic nanolaser utilizes highly confined surface plasmon polariton (SPP) mode that can exceed diffraction limit and their strong Purcell effect can accelerate the modulation rates to several THz. Herein, we propose a parametrically tunable artificial plasmonic nanolasers based on metal-insulator-semiconductor-insulator-metal (MISIM) structure, which demonstrates its ability to compress the mode field volume to $\lambda /14$. As the pump power increases, the proposed artificial plasmonic nanolaser exhibits 20-nm-wide output spectrum. Additionally, we investigate the effects of various cavity parameters on the nanolaser's output threshold, offering potentials for realizing low-threshold artificial plasmonic nanolasers. Moreover, we observe a blue shift in the center wavelength of the nanolaser output with thinner gain layer thickness, predominantly attributed to the increased exciton-photon coupling strength. Our work brings inspiration to several areas, including spaser-based interconnects, nano-LEDs, spontaneous emission control, miniaturization of photon condensates, eigenmode engineering of plasmonic nanolasers, and optimal design driven by artificial intelligence (AI).
Keywords:  surface plasmon polaritons      nanolaser      ultrafast      MISIM  
Received:  28 December 2023      Revised:  20 February 2024      Accepted manuscript online:  28 February 2024
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  68.47.Fg (Semiconductor surfaces)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  81.07.Gf (Nanowires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174037, 12204061, 12204030, and 62375003), the Fundamental Research Funds for the Central Universities, China (Grant No. 2022XD-A09), and the Fund from the State Key Laboratory of Information Photonics and Optical Communication, China (Grant No. IPOC2021ZZ02).
Corresponding Authors:  Li Yu     E-mail:  yuliyuli@bupt.edu.cn

Cite this article: 

Peng Zhou(周鹏), Jia-Qi Guo(郭佳琦), Kun Liang(梁琨), Lei Jin(金磊), Xiong-Yu Liang(梁熊玉), Jun-Qiang Li(李俊强), Xu-Yan Deng(邓绪彦), Jian-Yu Qin(秦建宇), Jia-Sen Zhang(张家森), and Li Yu(于丽) Tunable artificial plasmonic nanolaser with wide spectrum emission operating at room temperature 2024 Chin. Phys. B 33 054210

[1] Andrae A S and Edler T 2015 Chanllenges 6 117
[2] Miller D A 1997 Int. J. Optoelectronics 11 155
[3] Cerdán L 2021 Annalen der Physik 533 2100122
[4] Sidiropoulos T P, Röder R, Geburt S, Hess O, Maier S A, Ronning C, and Oulton R F 2014 Nat. Phys. 10 870
[5] Altug H, Englund D and Vučković J 2006 Nat. Phys. 2 484
[6] Ma R M and Oulton R F 2019 Nat. Nanotechnol. 14 12
[7] Sidiropoulos T P, Röder R, Geburt S, Hess O, Maier S A, Ronning C and Oulton R F 2014 Nat. Phys. 10 870
[8] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L and Zhang X 2009 Nature 461 629
[9] Hill M T, Marell M, Leong E S, Smalbrugge B, Zhu Y, Sun M and Smit M K 2009 Opt. Express 17 11107
[10] Gao Z, Wang J H, Song P, Kang B, Xu J J and Chen H Y 2020 Adv. Mater. 32 1907233
[11] Temnov V V 2012 Nat. Photon. 6 728
[12] Ni C Y A and Chuang S L 2012 Opt. Express 20 16450
[13] Aust R, Kaul T, Ning C Z, Lingnau B and Lüdge K 2016 Opt. Quantum Electron. 48 1
[14] Liu X, Zhang Q, Xiong Q and Sum T C 2013 Nano Lett. 13 1080
[15] Zhang Q, Shang Q, Shi J, Chen J, Wang R, Mi Y and Sum T C 2017 ACS Photon. 4 2789
[16] Pan A, Zhou W, Leong E S, Liu R, Chin A H, Zou B and Ning C Z 2009 Nano Lett. 9 784
[17] Thanikaikarasan S, Perumal R and Venkatamuthukumar J 2019 J. Mater. Sci.: Mater. Electron. 30 1500
[18] Wang S, Wang W, Lu J P and Ni Z H 2021 Acta Phys. Sin. 70 206802 (in Chinese)
[19] Zhou P, Liang K, Wang Y, Sun Q A, Guo J and Yu L 2023 Photonics 10 69
[20] Wang Y, Li S, Zhang Y and Yu L 2018 Plasmonics 13 107
[21] Rashid K S, Tathfif I, Yaseer A A, Hassan M F and Sagor R H 2021 Opt. Express 29 37541
[22] Khonina S N, Kazanskiy N L, Butt M A, Kaźmierczak A and Piramid-owicz R 2021 Opt. Express 29 16584
[23] Ding K, Diaz J O, Bimberg D and Ning C Z 2015 Laser Photon. Rev. 9 488
[24] Merghem K, Akrout A, Martinez A, Aubin G, Ramdane A, Lelarge F and Duan G H 2009 Appl. Phys. Lett. 94 021107
[25] Zhang Q, Li G, Liu X, Qian F, Li Y, Sum T C and ong Q 2014 Nat. Commun. 5 4953
[26] Jiang M, Tang K, Wan P, Xu T, Xu H and Kan C 2021 Nanoscale 13 1663
[27] Du W, Zhang S, Shi J, Chen J, Wu Z, Mi Y and Liu X 2018 ACS Photon. 5 2051
[28] Lu Y J, Wang C Y, Kim J, Chen H Y, Lu M Y, Chen Y C and Gwo S 2014 Nano Lett. 14 4381
[29] Huang C, Sun W, Fan Y, Wang Y, Gao Y, Zhang N and Song Q 2018 ACS Nano 12 3865
[30] Azzam S I, Kildishev A V, Ma R M, Ning C Z, Oulton R, Shalaev V M and Zhang X 2020 Light: Science & Applications 9 90
[31] Stockman M I 2020 Adv. Photon. 2 054002
[32] Ning C Z 2019 Adv. Photon. 1 014002
[33] Keshmarzi E K, Tait R N and Berini P 2018 Nanoscale 10 5914
[34] Zhang Q, Shang Q, Su R, Do T T H and Xiong Q 2021 Nano Lett. 21 1903
[1] Near-field radiative heat transfer between nanoporous GaN films
Xiaozheng Han(韩晓政), Jihong Zhang(张纪红), Haotuo Liu(刘皓佗), Xiaohu Wu(吴小虎), and Huiwen Leng(冷惠文). Chin. Phys. B, 2024, 33(4): 047801.
[2] Ultrafast photoemission electron microscopy: A multidimensional probe of nonequilibrium physics
Yanan Dai(戴亚南). Chin. Phys. B, 2024, 33(3): 038703.
[3] Ultrafast magneto-optical dynamics in nickel (111) single crystal studied by the integration of ultrafast reflectivity and polarimetry probes
Hao Kuang(匡皓), Junxiao Yu(余军潇), Jie Chen(陈洁), H. E. Elsayed-Ali, Runze Li(李润泽), and Peter M. Rentzepis. Chin. Phys. B, 2024, 33(3): 037802.
[4] Progress and realization platforms of dynamic topological photonics
Qiu-Chen Yan(闫秋辰), Rui Ma(马睿), Xiao-Yong Hu(胡小永), and Qi-Huang Gong(龚旗煌). Chin. Phys. B, 2024, 33(1): 010301.
[5] Capturing the non-equilibrium state in light—matter—free-electron interactions through ultrafast transmission electron microscopy
Wentao Wang(汪文韬), Shuaishuai Sun(孙帅帅), Jun Li(李俊), Dingguo Zheng(郑丁国), Siyuan Huang(黄思远), Huanfang Tian(田焕芳), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇). Chin. Phys. B, 2024, 33(1): 010701.
[6] Ultrafast carrier dynamics in GeSn thin film based on time-resolved terahertz spectroscopy
Panpan Huang(黄盼盼), Youlu Zhang(张有禄), Kai Hu(胡凯), Jingbo Qi(齐静波), Dainan Zhang(张岱南), and Liang Cheng(程亮). Chin. Phys. B, 2024, 33(1): 017201.
[7] Photophysics of metal-organic frameworks: A brief overview
Qingshuo Liu(刘晴硕), Junhong Yu(余俊宏), and Jianbo Hu(胡建波). Chin. Phys. B, 2024, 33(1): 017204.
[8] Ultrafast dynamics in photo-excited Mott insulator Sr3Ir2O7 at high pressure
Xia Yin(尹霞), Jianbo Zhang(张建波), Wang Dong(王东), Takeshi Nakagawa, Chunsheng Xia(夏春生), Caoshun Zhang(张曹顺), Weicheng Guo(郭伟程), Jun Chang(昌峻), and Yang Ding(丁阳). Chin. Phys. B, 2024, 33(1): 016103.
[9] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[10] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[11] Inertial effect on minimum magnetic field for magnetization reversal in ultrafast magnetism
Xue-Meng Nan(南雪萌), Chuan Qu(屈川), Peng-Bin He(贺鹏斌), and Zai-Dong Li(李再东). Chin. Phys. B, 2023, 32(12): 127506.
[12] Ultrafast two-dimensional x-ray imager with temporal fiducial pulses for laser-produced plasmas
Zheng-Dong Liu(刘正东), Jia-Yong Zhong(仲佳勇), Xiao-Hui Yuan(远晓辉), Ya-Peng Zhang(张雅芃), Jia-Wen Yao(姚嘉文), Zuo-Lin Ma(马作霖), Xiang-Yan Xu(徐向晏), Yan-Hua Xue(薛彦华), Zhe Zhang(张喆), Da-Wei Yuan(袁大伟), Min-Rui Zhang(张敏睿), Bing-Jun Li(李炳均), Hao-Chen Gu(谷昊琛), Yu Dai(戴羽), Cheng-Long Zhang(张成龙), Yu-Feng Dong(董玉峰), Peng Zhou(周鹏), Xin-Jie Ma(马鑫杰), Yun-Feng Ma(马云峰), Xue-Jie Bai(白雪洁), Gao-Yang Liu(刘高扬), Jin-Shou Tian(田进寿), Gang Zhao(赵刚), and Jie Zhang(张杰). Chin. Phys. B, 2023, 32(11): 110702.
[13] Role of excited states in helium-like ions on high-order harmonic generation
Jiang-Hua Luo(罗江华) and Jia-Jun Xiao(肖佳俊). Chin. Phys. B, 2023, 32(11): 113201.
[14] Multilevel optoelectronic hybrid memory based on N-doped Ge2Sb2Te5 film with low resistance drift and ultrafast speed
Ben Wu(吴奔), Tao Wei(魏涛), Jing Hu(胡敬), Ruirui Wang(王瑞瑞), Qianqian Liu(刘倩倩), Miao Cheng(程淼), Wanfei Li(李宛飞), Yun Ling(凌云), and Bo Liu(刘波). Chin. Phys. B, 2023, 32(10): 108505.
[15] Active control of surface plasmon polaritons with phase change materials
Yuan-Zhen Qi(漆元臻), Qiao Jiang(蒋瞧), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(10): 104202.
No Suggested Reading articles found!