Special Issue:
SPECIAL TOPIC — States and new effects in nonequilibrium
|
SPECIAL TOPIC—States and new effects in nonequilibrium |
Prev
Next
|
|
|
Ultrafast carrier dynamics in GeSn thin film based on time-resolved terahertz spectroscopy |
Panpan Huang(黄盼盼)1, Youlu Zhang(张有禄)2, Kai Hu(胡凯)1, Jingbo Qi(齐静波)2,3,†, Dainan Zhang(张岱南)1,2,‡, and Liang Cheng(程亮)2,3,§ |
1 School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China; 3 School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China |
|
|
Abstract We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers. The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm, and its pump-induced photoconductivity can be explained by the Drude—Smith model. The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture. The first- and second-order recombination rates are obtained by the rate equation fitting, which are (2.6±1.1)×10-2 ps-1 and (6.6±1.8)×10-19 cm3·ps-1, respectively. Meanwhile, we also obtain the diffusion length of photo-generated carriers in GeSn, which is about 0.4 μm, and it changes with the pump delay time. These results are important for the GeSn-based infrared optoelectronic devices, and demonstrate that GeSn materials can be applied to high-speed optoelectronic detectors and other applications.
|
Received: 09 March 2023
Revised: 11 April 2023
Accepted manuscript online: 24 April 2023
|
PACS:
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
72.15.Lh
|
(Relaxation times and mean free paths)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004067, 11974070, 62027807, and 52272137) and the National Key R&D Program of China (Grant No. 2022YFA1403000). |
Corresponding Authors:
Jingbo Qi, Dainan Zhang, Liang Cheng
E-mail: jbqi@uestc.edu.cn;dnzhang@uestc.edu.cn;chengliang@uestc.edu.cn
|
Cite this article:
Panpan Huang(黄盼盼), Youlu Zhang(张有禄), Kai Hu(胡凯), Jingbo Qi(齐静波), Dainan Zhang(张岱南), and Liang Cheng(程亮) Ultrafast carrier dynamics in GeSn thin film based on time-resolved terahertz spectroscopy 2024 Chin. Phys. B 33 017201
|
[1] Miao Y, Wang G, Kong Z, Xu B, Zhao X, Luo X, Lin H, Dong Y, Lu B, Dong L, Zhou J, Liu J and Radamson H H 2021 Nanomaterials 11 2556 [2] Zheng J, Liu Z, Xue C, Li C, Zuo Y, Cheng B and Wang Q 2018 J. Semicond. 39 061006 [3] Chen R, Lin H, Huo Y, Hitzman C, Kamins T I and Harris J S 2011 Appl. Phys. Lett. 99 181125 [4] Ghetmiri S A, Du W, Margetis J, Mosleh A, Cousar L, Conley B R, Domulevicz L, Nazzal A, Sun G, Soref R A, Tolle J, Li B, Naseem H A and Yu S Q 2014 Appl. Phys. Lett. 105 151109 [5] Kouvetakis J, Menendez J and Chizmeshya A V G 2006 Annu. Rev. Mater. Res. 36 497 [6] Fang Y C, Chen K Y, Hsieh C H, Su C C and Wu Y H 2015 ACS Appl. Mater. Interfaces 7 26374 [7] Wang H, Han G, Jiang X, Liu Y, Zhang J and Hao Y 2019 IEEE Trans. Electron Devices 66 1985 [8] Schulte-Braucks C, Pandey R, Sajjad R N, Barth M, Ghosh R K, Grisafe B, Sharma P, von den Driesch N, Vohra A, Rayner G B, Loo R, Mantl S, Buca D, Yeh C C, Wu C H, Tsai W, Antoniadis D A and Datta S 2017 IEEE Trans. Electron Devices 64 4354 [9] Lei D, Lee K H, Huang Y C, Wang W, Masudy-Panah S, Yadav S, Kumar A, Dong Y, Kang Y, Xu S, Wu Y, Tan C S, Gong X and Yeo Y C 2018 IEEE Trans. Electron Devices 65 3754 [10] Peng L, Li X, Zheng J, Liu X, Li M, Liu Z, Xue C, Zuo Y and Cheng B 2020 J. Lumin. 228 117539 [11] Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D and Grützmacher D 2015 Nat. Photonics 9 88 [12] Cong H, Yang F, Xue C, Yu K, Zhou L, Wang N, Cheng B and Wang Q 2018 Small 14 1704414 [13] Sun G, Cheng H H, Menéndez J, Khurgin J B and Soref R A 2007 Appl. Phys. Lett. 90 251105 [14] Sun G and Yu S Q 2013 Solid State Electron. 83 76 [15] D'Costa V R, Cook C S, Birdwell A G, Littler C L, Canonico M, Zollner S, Kouvetakis J and Menéndez J 2006 Phys. Rev. B 73 125207 [16] Liu X, Zheng J, Niu C, Liu T, Huang Q, Li M, Zhang D, Pang Y, Liu Z, Zuo Y and Cheng B 2022 Photonics Res. 10 1567 [17] Shin H J, Bae S and Sim S 2020 Nanoscale 12 22185 [18] La-o-vorakiat C, Salim T, Kadro J, Khuc M T, Haselsberger R, Cheng L, Xia H, Gurzadyan G G, Su H, Lam Y M, Marcus R A, Michel-Beyerle M E and Chia E E M 2015 Nat. Commun. 6 7903 [19] Li D, Zhang W, Suo P, Chen J, Sun K, Zou Y, Ma H, Lin X, Yan X, Zhang S, Li B and Ma G 2022 J. Phys. Chem. Lett. 13 2757 [20] Song Z, Fan W, Tan C S, Wang Q, Nam D, Zhang D H and Sun G 2019 New J. Phys. 21 073037 [21] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M and Kampfrath T 2016 Nat. Photonics 10 483 [22] Lourembam J, Srivastava A, La-o-vorakiat C, Cheng L, Venkatesan T and Chia E E M 2016 Sci. Rep. 6 25538 [23] Zou X, Shang J, Leaw J, Luo Z, Luo L, La-o-vorakiat C, Cheng L, Cheong S A, Su H, Zhu J X, Liu Y, Loh K P, Castro Neto A H, Yu T and Chia E E M 2013 Phys. Rev. Lett. 110 067401 [24] La-o-vorakiat C, Cheng L, Salim T, Marcus R A, Michel-Beyerle M E, Lam Y M and Chia E E M 2017 Appl. Phys. Lett. 110 123901 [25] Lourembam J, Srivastava A, La-o-vorakiat C, Rotella H, Venkatesan T and Chia E E M 2015 Sci. Rep. 5 9182 [26] Ulbricht R, Hendry E, Shan J, Heinz T F and Bonn M 2011 Rev. Mod. Phys. 83 543 [27] Averitt R D and Taylor A J 2002 J. Phys. Condens. Matter 14 R1357 [28] Demsar J, Sarrao J L and Taylor A J 2006 J. Phys. Condens. Matter 18 R281 [29] Hoffmann M C, Hebling J, Hwang H Y, Yeh K L and Nelson K A 2009 J. Opt. Soc. Am. B 26 A29 [30] Ikebe Y and Shimano R 2008 Appl. Phys. Lett. 92 012111 [31] Sabbah A J and Riffe D M 2002 Phys. Rev. B 66 165217 [32] Yang H Y, Singh B, Lu B, Huang C Y, Bahrami F, Chiu W C, Graf D, Huang S M, Wang B, Lin H, Torchinsky D, Bansil A and Tafti F 2020 APL Mater. 8 011111 [33] Kim J, Oh J, In C, Lee Y S, Norris T B, Jun S C and Choi H 2014 ACS Nano 8 2486 [34] Dominici S, Wen H, Bertazzi F, Goano M and Bellotti E 2016 Opt. Express 24 26363 [35] Sun G, Soref R A and Cheng H H 2010 J. Appl. Phys. 108 033107 [36] Gallagher J D, Senaratne C L, Xu C, Sims P, Aoki T, Smith D J, Menéndez J and Kouvetakis J 2015 J. Appl. Phys. 117 245704 [37] Lu L K, Yang Y, Han G, Fan W and Yeo Y C 2012 J. Appl. Phys. 112 103715 [38] Ščajev P, Soriutė V, Kreiza G, Malinauskas T, Stanionytė S, Onufrijevs P, Medvids A and Cheng H H 2020 J. Appl. Phys. 128 115103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|