Special Issue:
SPECIAL TOPIC — States and new effects in nonequilibrium
|
TOPICAL REVIEW—States and new effects in nonequilibrium |
Prev
Next
|
|
|
Capturing the non-equilibrium state in light—matter—free-electron interactions through ultrafast transmission electron microscopy |
Wentao Wang(汪文韬)1,2,†, Shuaishuai Sun(孙帅帅)1,†, Jun Li(李俊)1, Dingguo Zheng(郑丁国)1, Siyuan Huang(黄思远)1,2, Huanfang Tian(田焕芳)1, Huaixin Yang(杨槐馨)1,2,4, and Jianqi Li(李建奇)1,2,3,‡ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 Yangtze River Delta Physics Research Center Co., Ltd., Liyang, Jiangsu 213300, China |
|
|
Abstract Ultrafast transmission electron microscope (UTEM) with the multimodality of time-resolved diffraction, imaging, and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump—probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photo-induced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light—free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.
|
Received: 19 June 2023
Revised: 28 September 2023
Accepted manuscript online: 09 October 2023
|
PACS:
|
07.78.+s
|
(Electron, positron, and ion microscopes; electron diffractometers)
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
79.20.Uv
|
(Electron energy loss spectroscopy)
|
|
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. U22A6005 and 12074408), the National Key Research and Development Program of China (Grant No. 2021YFA1301502), Guangdong Major Scientific Research Project (Grant No. 2018KZDXM061), Youth Innovation Promotion Association of CAS (Grant No. 2021009), Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant Nos. YJKYYQ20200055, ZDKYYQ2017000, and 22017BA10), Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB33010100), Beijing Municipal Science and Technology Major Project (Grant No. Z201100001820006), IOP Hundred Talents Program (Grant No. Y9K5051), Postdoctoral Support Program of China (Grant No. 2020M670501), and the Synergetic Extreme Condition User Facility (SECUF). |
Corresponding Authors:
Jianqi Li
E-mail: ljq@aphy.iphy.ac.cn
|
Cite this article:
Wentao Wang(汪文韬), Shuaishuai Sun(孙帅帅), Jun Li(李俊), Dingguo Zheng(郑丁国), Siyuan Huang(黄思远), Huanfang Tian(田焕芳), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇) Capturing the non-equilibrium state in light—matter—free-electron interactions through ultrafast transmission electron microscopy 2024 Chin. Phys. B 33 010701
|
[1] Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstrčil M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G and Muller D A 2021 Science 372 826 [2] Krivanek O L, Dellby N, Hachtel J A, Idrobo J C, Hotz M T, Plotkin-Swing B, Bacon N J, Bleloch A L, Corbin G J, Hoffman M V, Meyer C E and Lovejoy T C 2019 Ultramicroscopy 203 60 [3] Vanacore G M, Fitzpatrick A W P and Zewail A H 2016 Nano Today 11 228 [4] Arbouet A,Caruso G M and Houdellier F 2018 Ultrafast Transmission Electron Microscopy:Historical Development, Instrumentation and Applications (London:Elsevier) pp. 1-72 [5] Caruso G M, Houdellier F, Weber S, Kociak M and Arbouet A 2019 Adv. Phys. X 4 1660214 [6] Park S T, Flannigan D J and Zewail A H 2012 J. Am. Chem. Soc. 134 9146 [7] Vanacore G M, van der Veen R M and Zewail A H 2015 ACS Nano 9 1721 [8] Li Z, Xiao R J, Xu P, Zhu C, Sun S, Zheng D, Wang H, Zhang M, Tian H, Yang H X and Li J Q 2019 ACS Nano 13 11623 [9] Horstmann J G,Böckmann H, Wit B, Kurtz F, Storeck G and Ropers C 2020 Nature 583 232 [10] Valley D T, Ferry V E and Flannigan D J 2016 Nano Lett. 16 7302 [11] Zhang Y and Flannigan D J 2021 Nano Lett. 21 7332 [12] Gnabasik R A, Suri P K, Chen J and Flannigan D J 2022 Phys. Rev. M 6 024802 [13] Tong L, Yuan J, Zhang Z, Tang J and Wang Z 2023 Nat. Nanotechnol. 18 145 [14] Su Z, Baskin J S, Zhou W, Thomas J M and Zewail A H 2017 J. Am. Chem. Soc. 139 4916 [15] Park S T, Lin M M and Zewail A H 2010 New. J. Phys. 12 123028 [16] Feist A, Echternkamp K E, Schauss J, Yalunin S V, Schäfer S and Ropers C 2015 Nature 521 200 [17] Zewail A H 2010 Science 328 187 [18] Zhu C, Zheng D, Wang H, Zhang M, Li Z, Sun S, Xu P, Tian H, Li Z, Yang H and Li J 2020 Ultramicroscopy 209 112887 [19] Barwick B, Park H S, Kwon O H, Baskin J S and Zewail A H 2008 Science 322 1227 [20] Piazza L, Masiel D J, LaGrange T, Reed B W, Barwick B and Carbone F 2013 Chem. Phys. 423 79 [21] Cao G, Sun S, Li Z, Tian H, Yang H and Li J 2015 Sci. Rep. 5 8404 [22] Bücker K, Picher M, Crégut O, LaGrange T, Reed B W, Park S T, Masiel D J and Banhart F 2016 Ultramicroscopy 171 8 [23] Ji S, Piazza L, Cao G, Park S T, Reed B W, Masiel D J and Weissenrieder J 2017 Struct. Dyn. 4 054303 [24] Feist A, Bach N, Rubiano da Silva N, Danz T, Möller M, Priebe K E, Domröse T, Gatzmann J G, Rost S, Schauss J, Strauch S, Bormann R, Sivis M, Schäfer S and Ropers C 2017 Ultramicroscopy 176 63 [25] Caruso G M, Houdellier F, Abeilhou P and Arbouet A 2017 Appl. Phys. Lett. 111 023101 [26] Olshin P K, Drabbels M and Lorenz U J 2020 Struct. Dyn. 7 054304 [27] Feist A, Rubiano da Silva N, Liang W, Ropers C and Schäfer S 2018 Struct. Dyn. 5 014302 [28] Houdellier F, Caruso G M, Weber S, Kociak M and Arbouet A 2018 Ultramicroscopy 186 128 [29] Verhoeven W, van Rens J F M, Kemper A H, Rietman E H, van Doorn H A, Koole I, Kieft E R, Mutsaers P H A and Luiten O J 2019 Rev. Sci. Instrum. 90 083703 [30] Fu X, Wang E, Zhao Y, Liu A, Montgomery E, Gokhale V J, Gorman J J, Jing C, Lau J W and Zhu Y 2020 Sci. Adv. 6 eabc3456 [31] Yang J, Yoshida Y and Yasuda H 2018 Microscopy 67 291 [32] Lu C, Jiang T, Liu S, Wang R, Zhao L, Zhu P, Liu Y, Xu J, Yu D, Wan W, Zhu Y, Xiang D and Zhang J 2018 Appl. Phys. Lett. 112 113102 [33] van Oudheusden T, Pasmans P L E M, van der Geer S B, de Loos M J, van der Wiel M J and Luiten O J 2010 Phys. Rev. Lett. 105 264801 [34] Gliserin A, Walbran M, Krausz F and Baum P 2015 Nat. Commun. 6 8723 [35] Sun S, Sun X, Bartles D, Wozniak E, Williams J, Zhang P and Ruan C Y 2020 Struct. Dyn. 7 064301 [36] Kealhofer C, Schneider W, Ehberger D, Ryabov A, Krausz F and Baum P 2016 Science 352 429 [37] Ehberger D, Mohler K J, Vasileiadis T, Ernstorfer R, Waldecker L and Baum P 2019 Phys. Rev. Appl. 11 024034 [38] Zhang Y, Li Z, Li Z, Li J, Li J and Yang H 2022 J. Phys. Chem. C 126 20929 [39] La Grange T, Reed B W and Masiel D J 2015 MRS Bull. 40 22 [40] Montgomery E, Leonhardt D and Roehling J 2021 Micros. Today 29 46 [41] Filippetto D, Musumeci P, Li R K, Siwick B J, Otto M R, Centurion M and Nunes J P F 2022 Rev. Mod. Phys. 94 045004 [42] Shimojima T,Nakamura A and Ishizaka K 2023 Microscopy 72 287 [43] Zong A, Kogar A and Gedik N 2021 MRS Bull. 46 720 [44] Sun X, Sun S and Ruan C Y 2021 C. R. Phys. 22 15 [45] Li Z, Sun S, Li Z A, Zhang M, Cao G, Tian H, Yang H and Li J 2017 Nanoscale 9 13313 [46] Sun S, Li Z, Li Z A, Xiao R, Zhang M, Tian H, Yang H and Li J 2018 Nanoscale 10 7465 [47] Chatelain R P, Morrison V R, Klarenaar B L M and Siwick B J 2014 Phys. Rev. Lett. 113 235502 [48] Mannebach E M, Nyby C, Ernst F, et al. 2017 Nano Lett. 17 7761 [49] Chebl M, He X and Yang D S 2022 Nano Lett. 22 5230 [50] Karam T E, Hu J and Blake G A 2018 ACS Photonics 5 1228 [51] Wei L, Sun S, Guo C, Li Z, Sun K, Liu Y, Lu W, Sun Y, Tian H, Yang H and Li J 2017 Struct. Dyn. 4 044012 [52] Zhang Y and Flannigan D J 2019 Nano Lett. 19 8216 [53] Flannigan D J, Curtis W A, VandenBussche E J and Zhang Y 2022 J. Chem. Phys. 157 180903 [54] Kim Y J, Lee Y, Kim K and Kwon O H 2020 ACS Nano 14 11383 [55] Nakamura A, Shimojima T, Chiashi Y, Kamitani M, Sakai H, Ishiwata S, Li H and Ishizaka K 2020 Nano Lett. 20 4932 [56] Eichberger M, Schäfer H, Krumova M, Beyer M, Demsar J, Berger H, Moriena G, Sciaini G and Miller R J D 2010 Nature 468 799 [57] Han T R T, Zhou F, Malliakas C D, Duxbury P M, Mahanti S D, Kanatzidis M G and Ruan C Y 2015 Sci. Adv. 1 e1400173 [58] Vogelgesang S, Storeck G, Horstmann J G, Diekmann T, Sivis M, Schramm S, Rossnagel K, Schäfer S and Ropers C 2018 Nat. Phys. 14 184 [59] Zong A, Shen X, Kogar A, Ye L, Marks C, Chowdhury D, Rohwer T, Freelon B, Weathersby S, Li R, Yang J, Checkelsky J, Wang X and Gedik N 2018 Sci. Adv. 4 eaau5501 [60] Zhou F, Williams J, Sun S, Malliakas C D, Kanatzidis M G, Kemper A F and Ruan C Y 2021 Nat. Commun. 12 566 [61] Liu Q M, Wu D, Li Z A, Shi L Y, Wang Z X, Zhang S J, Lin T, Hu T C, Tian H F, Li J Q, Dong T and Wang N L 2021 Nat. Commun. 12 2050 [62] Sun S, Wei L, Li Z, Cao G, Liu Y, Lu W J, Sun Y P, Tian H, Yang H and Li J 2015 Phys. Rev. B 92 224303 [63] Sun K, Sun S, Zhu C, Tian H, Yang H and Li J 2018 Sci. Adv. 4 eaas9660 [64] Danz T,Domröse T and Ropers C 2021 Science 371 371 [65] Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S and Mihailovic D 2014 Science 344 177 [66] Zhang M, Cao G, Tian H, Sun S, Li Z, Li X, Guo C, Li Z, Yang H and Li J 2017 Phys. Rev. B 96 174203 [67] Zhang M, Li Z A, Sun S, Xu P, Zhu C, Tian H, Li Z, Zhang Y, Yang H and Li J 2019 Phys. Rev. Appl. 12 034037 [68] Baum P, Yang D S and Zewail A H 2007 Science 318 788 [69] Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhács A, Chaker M and Siwick B J 2014 Science 346 445 [70] Sood A, Shen X, Shi Y, Kumar S, Park S J, Zajac M, Sun Y, Chen L Q, Ramanathan S, Wang X, Chueh W C and Lindenberg A M 2021 Science 373 352 [71] Zhang M, Li Z A, Tian H, Yang H and Li J 2018 Appl. Phys. Lett. 113 133103 [72] Kim Y J, Nho H W, Ji S, Lee H, Ko H, Weissenrieder J and Kwon O H 2023 Sci. Adv. 9 eadd5375 [73] Harvey T, Silva N, Gaida J, Möller M, Feist A, Schäfer S and Ropers C 2021 MRS Bull. 46 711 [74] Shimojima T, Nakamura A, Yu X, Karube K, Taguchi Y, Tokura Y and Ishizaka K 2021 Sci. Adv. 7 eabg1322 [75] Tengdin P, Truc B, Sapozhnik A, Kong L, del Ser N, Gargiulo S, Madan I, Schönenberger T, Baral P R, Che P, Magrez A, Grundler D, Ronnow H M, Lagrange T, Zang J, Rosch A and Carbone F 2022 Phys. Rev. X 12 041030 [76] Giannetti C, Capone M, Fausti D, Fabrizio M, Parmigiani F and Mihailovic D 2016 Adv. Phys. 65 58 [77] Orenstein J 2012 Phys. Today 65 44 [78] Carbone F, Hengsberger M, Castiglioni L and Osterwalder J 2017 Struct. Dyn. 4 061504 [79] Egerton R F 2011 Electron Energy-Loss Spectroscopy in Electron Microscopy (3rd edn.) (New York:Springer) pp. 1-26 [80] Liu H, Baskin J S and Zewail A H 2016 Proc. Natl. Acad. Sci. USA 113 2041 [81] Carbone F, Kwon O H and Zewail A H 2009 Science 325 181 [82] Carbone F 2010 Chem. Phys. Lett. 496 291 [83] Piazza L, Ma C, Yang H X, Mann A, Zhu Y, Li J Q and Carbone F 2013 Struct. Dyn. 1 014501 [84] Zheng D, Zhu C, Li Z, Li Z, Li J, Sun S, Zhang Y, Wang F, Tian H, Yang H and Li J 2020 Nanoscale Adv. 2 2808 [85] van der Veen R M, Penfold T J and Zewail A H 2015 Struct. Dyn. 2 024302 [86] Carbone F 2015 Struct. Dyn. 2 020601 [87] Pomarico E, Kim Y J, de Abajo F J G, Kwon O H, Carbone F and van der Veen R M 2018 MRS Bull. 43 497 [88] Hassan M T, Liu H, Baskin J S and Zewail A H 2015 Proc. Natl. Acad. Sci. USA 112 12944 [89] Fu X, Barantani F, Gargiulo S, Madan I, Berruto G, LaGrange T, Jin L, Wu J, Vanacore G M, Carbone F and Zhu Y 2021 Nat. Commun. 12 2123 [90] Zheng D, Huang S, Zhu C, Li Z, Zhang Y, Yang D, Tian H, Li J, Yang H and Li J 2022 Nanoscale 14 10477 [91] Barwick B, Flannigan D J and Zewail A H 2009 Nature 462 902 [92] Javier Garcia de Abajo F, Asenjo-Garcia A and Kociak M 2010 Nano Lett. 10 1859 [93] Pomarico E, Madan I, Berruto G, Vanacore G M, Wang K, Kaminer I, Garcia de Abajo F J and Carbone F 2018 ACS Photonics 5 759 [94] Hassan M T, Baskin J S, Liao B and Zewail A H 2017 Nat. Photonics 11 425 [95] Yurtsever A, van der Veen R M and Zewail A H 2012 Science 335 59 [96] Yurtsever A, Baskin J S and Zewail A H 2012 Nano Lett. 12 5027 [97] Yurtsever A and Zewail A H 2012 Nano Lett. 12 3334 [98] Piazza L, Lummen T T A, Quinonez E, Murooka Y, Reed B W, Barwick B and Carbone F 2015 Nat. Commun. 6 6407 [99] Fu X, Sun Z, Ji S, Liu F, Feng M, Yoo B K and Zhu Y 2022 Nano Lett. 22 2009 [100] Flannigan D J, Barwick B and Zewail A H 2010 Proc. Natl. Acad. Sci. USA 107 9933 [101] Huang S, Xu P, Zheng D, Li J, Tian H, Yang H and Li J 2023 Appl. Phys. Lett. 122 111102 [102] Madan I, Vanacore G M, Pomarico E, Berruto G, Lamb R J, McGrouther D, Lummen T T A, Latychevskaia T, Garcia de Abajo F J and Carbone F 2019 Sci. Adv. 5 eaav8358 [103] Lummen T T A, Lamb R J, Berruto G, LaGrange T, Dal Negro L, Garcia de Abajo F J, McGrouther D, Barwick B and Carbone F 2016 Nat. Commun. 7 13156 [104] Konecna A, Di Giulio V, Mkhitaryan V, Ropers C and Garcia de Abajo F J 2020 ACS Photonics 7 1290 [105] Zheng D, Huang S, Zhu C, Xu P, Li Z, Wang H, Li J, Tian H, Yang H and Li J 2021 Nano Lett. 21 10238 [106] Wang K, Dahan R, Shentcis M, Kauffmann Y, Ben Hayun A, Reinhardt O, Tsesses S and Kaminer I 2020 Nature 582 50 [107] Kfir O, Lourenco-Martins H, Storeck G, Sivis M, Harvey T R, Kippenberg T J, Feist A and Ropers C 2020 Nature 582 46 [108] Yannai M, Dahan R, Gorlach A, Adiv Y, Wang K, Madan I, Gargiulo S, Barantani F, Dias E J C, Vanacore G M, Rivera N, Carbone F, de Abajo F J G and Kaminer I 2023 ACS Nano 17 3645 [109] Madan I, Dias E J C, Gargiulo S, Barantani F, Yannai M, Berruto G, LaGrange T, Piazza L, Lummen T T A, Dahan R, Kaminer I, Vanacore G M, de Abajo F J G and Carbone F 2023 ACS Nano 17 3657 [110] Kurman Y, Dahan R, Sheinfux H H, Wang K, Yannai M, Adiv Y, Reinhardt O, Tizei L H G, Woo S Y, Li J, Edgar J H, Kociak M, Koppens F H L and Kaminer I 2021 Science 372 1181 [111] Echternkamp K E, Feist A, Schafer S and Ropers C 2016 Nat. Phys. 12 1000 [112] Henke J W, Raja A S, Feist A, Huang G, Arend G, Yang Y, Kappert F J, Wang R N, Moller M, Pan J, Liu J, Kfir O, Ropers C and Kippenberg T J 2021 Nature 600 653 [113] Adiv Y, Wang K, Dahan R, Broaddus P, Miao Y, Black D, Leedle K, Byer R L, Solgaard O, England R J and Kaminer I 2021 Phys. Rev. X 11 041042 [114] Shiloh R, Schoenenberger N, Adiv Y, Ruimy R, Karnieli A, Hughes T, England R J, Leedle K J, Black D S, Zhao Z, Musumeci P, Byer R l, Arie A, Kaminer I and Hommelhoff P 2022 Adv. Opt. Photonics 14 862 [115] Tsesses S, Dahan R, Wang K, Bucher T, Cohen K, Reinhardt O, Bartal G and Kaminer I 2023 Nat. Mater. 22 345 [116] Konecna A and Garcia de Abajo F J 2020 Phys. Rev. Lett. 125 030801 [117] Polman A, Kociak M and García de Abajo F J 2019 Nat. Mater. 18 1158 [118] Gliserin A, Apolonski A, Krausz F and Baum P 2012 New. J. Phys. 14 073055 [119] Gover A and Pan Y 2018 Phys. Lett. A 382 1550 [120] Pan Y, Zhang B and Gover A 2019 Phys. Rev. Lett. 122 183204 [121] Priebe K E, Rathje C, Yalunin S V, Hohage T, Feist A, Schäfer S and Ropers C 2017 Nat. Photonics 11 793 [122] Yang Y, Roques-Carmes C, Kooi S E, Tang H, Beroz J, Mazur E, Kaminer I, Joannopoulos J D and Soljacic M 2023 Nature 613 42 [123] Morimoto Y and Baum P 2018 Nat. Phys. 14 252 [124] Vanacore G M, Madan I, Berruto G, Wang K, Pomarico E, Lamb R J, McGrouther D, Kaminer I, Barwick B, Garcia de Abajo F J and Carbone F 2019 Nat. Commun. 10 1069 [125] Morimoto Y and Baum P 2018 Phys. Rev. A 97 033815 [126] Batelaan H 2007 Rev. Mod. Phys. 79 929 [127] Freimund D L, Aflatooni K and Batelaan H 2001 Nature 413 142 [128] Schwartz O, Axelrod J J, Campbell S L, Turnbaugh C, Glaeser R M and Mueller H 2019 Nat. Methods 16 1016 [129] Feist A, Yalunin S V, Schäfer S and Ropers C 2020 Phys. Rev. Res. 2 043227 [130] Vanacore G M, Berruto G, Madan I, Pomarico E, Biagioni P, Lamb R J, McGrouther D, Reinhardt O, Kaminer I, Barwick B, Larocque H, Grillo V, Karimi E, Garcia de Abajo F J and Carbone F 2019 Nat. Mater. 18 573 [131] Uchida M and Tonomura A 2010 Nature 464 737 [132] Verbeeck J, Tian H and Schattschneider P 2010 Nature 467 301 [133] McMorran B J, Agrawal A, Anderson I M, Herzing A A, Lezec H J, McClelland J J and Unguris J 2011 Science 331 192 [134] Garcia de Abajo F J, Barwick B and Carbone F 2016 Phys. Rev. B 94 041404 [135] Cai W, Reinhardt O, Kaminer I and Garcia de Abajo F J 2018 Phys. Rev. B 98 045424 [136] Madan I, Leccese V, Mazur A, Barantani F, LaGrange T, Sapozhnik A, Tengdin P M, Gargiulo S, Rotunno E, Olaya J C, Kaminer I, Grillo V, de Abajo F J G, Carbone F and Vanacore G M 2022 ACS Photonics 9 3215 [137] Garcia de Abajo F J and Konecna A 2021 Phys. Rev. Lett. 126 123901 [138] Kfir O 2019 Phys. Rev. Lett. 123 103602 [139] Feist A, Huang G, Arend G, Yang Y, Henke J W, Raja A S, Kappert F J, Wang R N, Lourenco-Martins H, Qiu Z, Liu J, Kfir O, Kippenberg T J and Ropers C 2022 Science 377 777 [140] Dahan R, Gorlach A, Haeusler U, Karnieli A, Eyal O, Yousefi P, Segev M, Arie A, Eisenstein G, Hommelhoff P and Kaminer I 2021 Science 373 eabj7128 [141] Di Giulio V, Kociak M and Garcia de Abajo F J 2019 Optica 6 1524 [142] Ben Hayun A, Reinhardt O, Nemirovsky J, Karnieli A, Rivera N and Kaminer I 2021 Sci. Adv. 7 eabe4270 [143] Baranes G, Ruimy R, Gorlach A and Kaminer I 2022 npj Quantum Inf. 8 32 [144] Chen Z, Zhang B, Pan Y and Krueger M 2023 Sci. Adv. 9 eadg8516 [145] Pan Y, Zhang B and Podolsky D 2022 arXiv:2207.07010[quant-ph] [146] Rotunno E, Gargiulo S, Vanacore G M, Mechel C, Tavabi A, Dunin Borkowski R E, Carbone F, Maidan I, Zanfrognini M, Frabboni S, Guner T, Karimi E, Kaminer I and Grillo V 2021 arXiv:2106.08955[quant-ph] [147] Reinhardt O, Mechel C, Lynch M and Kaminer I 2021 Ann Phys. 533 2000254) [148] Tsarev M V, Ryabov A and Baum P 2021 Phys. Rev. Res. 3 043033 [149] Talebi N 2020 Phys. Rev. Lett. 125 080401 [150] Shiloh R, Chlouba T and Hommelhoff P 2022 Phys. Rev. Lett. 128 235301 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|