Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127506    DOI: 10.1088/1674-1056/acd3de
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Inertial effect on minimum magnetic field for magnetization reversal in ultrafast magnetism

Xue-Meng Nan(南雪萌)1, Chuan Qu(屈川)1, Peng-Bin He(贺鹏斌)2, and Zai-Dong Li(李再东)1,†
1 Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China;
2 School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  In the field of ultrafast magnetism, i.e., subpicosecond or femtosecond time scales, the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation. In terms of this equation, the intrinsic characteristics are investigated in detail for the theoretical limit of the magnetization reversal field. We can find that there is a critical value for the inertia parameter τc, which is affected by the damping and anisotropy parameter of the system. When the inertial parameter factor τ<τc, the limit value of the magnetization reversal field under the ultrafast magnetic mechanism is smaller than that of the fast magnetic mechanism. When τ>τc, the limit value of the magnetization reversal field will be larger than the limit value under the fast magnetic mechanism. Moreover, it is important to point out that the limit value of the magnetization reversal field under the ultrafast magnetic mechanism decreases with the increasing inertial factor, as τ<τc/2, which increases with inertial factor τ as τ>τc/2. Finally, with the joint action of damping and anisotropy, compared with fast magnetism, we find that the limit value of the magnetization reversal field has rich variation characteristics, i.e., there is not only a linear and proportional relationship, but also an inverse relationship, which is very significant for the study of ultrafast magnetism.
Keywords:  inertial effect      minimum magnetic field      ultrafast magnetism  
Received:  07 January 2023      Revised:  28 April 2023      Accepted manuscript online:  10 May 2023
PACS:  75.78.-n (Magnetization dynamics)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.25.Rb (Spin relaxation and scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61774001), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, China (Grant No.KF202203), the NSF of Changsha City (Grant No.kq2208008), and the NSF of Hunan Province (Grant No.2023JJ30116).
Corresponding Authors:  Zai-Dong Li     E-mail:  lizd@email.tjut.edu.cn

Cite this article: 

Xue-Meng Nan(南雪萌), Chuan Qu(屈川), Peng-Bin He(贺鹏斌), and Zai-Dong Li(李再东) Inertial effect on minimum magnetic field for magnetization reversal in ultrafast magnetism 2023 Chin. Phys. B 32 127506

[1] Neeraj K, Awari N, Kovalev S, Polley D, Zhou Hagström N, Arekapudi S S P K, Semisalova A, Lenz K, Green B, Deinert J C, Ilyakov I, Chen M, Bawatna M, Scalera V, d'Aquino M, Serpico C, Hellwig O, Wegrowe J E, Gensch M and Bonetti S 2021 Nat. Phys. 17 245
[2] Vlasov V S, Lomonosov A M, Golov A V, Kotov L N, Besse V, Alekhin A, Kuzmin D A, Bychkov I V and Temnov V V 2020 Phys. Rev. B 101 024425
[3] Sun Z Z and Wang X R 2005 Phys. Rev. B 71 174430
[4] Böttcher D and Henk J 2012 Phys. Rev. B 86 020404
[5] Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A and Gaudin G 2011 Nat. Mater. 10 419
[6] Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fähnle M, Roth T, Cinchetti M and Aeschlimann M 2010 Nat. Mater. 9 259
[7] Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M and Koopmans B 2008 Nat. Phys. 4 855
[8] Beaurepaire E, Merle J C, Daunois A and Bigot J Y 1996 Phys. Rev. Lett. 76 4250
[9] Fähnle M, Steiauf D and Illg C 2011 Phys. Rev. B 84 172403
[10] Fähnle M, Steiauf D and Illg C 2013 Phys. Rev. B 88 219905
[11] Li Y, Barra A L, Auffret S, Ebels U and Bailey W E 2015 Phys. Rev. B 92 140413
[12] Neeraj K, Pancaldi M, Scalera V, Perna S, d'Aquino M, Serpico C and Bonetti S 2022 Phys. Rev. B 105 054415
[13] Makhfudz I, Olive E and Nicolis S 2020 Appl. Phys. Lett. 117 132403
[14] Mondal R, Berritta M and Oppeneer P M 2016 Phys. Rev. B 94 144419
[15] Janušonis J, Jansma T, Chang C L, Gatilova L Q A, Lomonosov A M, Shalagatskyi V, Pezeril T, Temnov V V and Tobey R I 2016 Sci. Rep. 6 29143
[16] Olive E, Lansac Y and Wegrowe J E 2012 Appl. Phys. Lett. 100 192407
[17] Olive E, Lansac Y, Meyer M, Hayoun M and Wegrowe J E 2015 J. Appl. Phys. 117 213904
[18] Tonig D, Eriksson O and Pereiro M 2017 Sci. Rep. 7 931
[19] Mondal R, Berritta M and Oppeneer P M 2018 J. Phys. Condens. Matter. 30 265801
[20] Kikuchi T and Tatara G 2015 Phys. Rev. B 92 184410
[21] Fähnle M 2019 J. Magn. Magn. Mater. 469 28
[22] Bastardis R, Vernay F and Kachkachi H 2018 Phys. Rev. B 98 165444
[23] Janušonis J, Chang C L, Jansma T, Gatilova A, Vlasov V S, Lomonosov A M, Temnov V V and Tobey R I 2016 Phys. Rev. B 94 024415
[24] Sun Z Z and Wang X R 2006 Phys. Rev. Lett. 97 077205
[25] Sun Z Z and Wang X R 2006 Phys. Rev. B 73 092416
[26] Vomir M, Andrade L H F, Guidoni L, Beaurepaire E and Bigot J Y 2005 Phys. Rev. Lett. 94 237601
[27] Li Z and Zhang S 2003 Phys. Rev. B 68 024404
[28] Xiao D, Tsoi M and Niu Q 2006 J. Appl. Phys. 99 013903
[29] Wetzels W, Bauer G E W and Jouravlev O N 2006 Phys. Rev. Lett. 96 127203
[30] Stoner E C and Wohlfarth E P 1948 Philos. Trans. R. Soc. London, Ser. A 240 599
[31] Mondal R, Berritta M, Nandy A K and Oppeneer P M 2017 Phys. Rev. B 96 024425
[32] Fähnle M and Illg C 2011 J. Phys.: Condens. Matter. 23 493201
[33] Ciornei M C, Rubi J M and Wegrowe J E 2011 Phys. Rev. B 83 020410
[34] Lomonosov A M, Temnov V V and Wegrowe J E 2021 Phys. Rev. B 104 054425
[35] Wegrowe J E and Ciornei M C 2012 Am. J. Phys. 80 607
[36] Mondal R and Kamra A 2021 Phys. Rev. B 104 214426
[37] Unikandanunni V, Medapalli R, Asa M, Albisetti E, Petti D, Bertacco R, Fullerton E E, and Bonetti S 2022 Phys. Rev. Lett. 129 237201
[38] Bhattacharjee S, Nordström L and Fransson J 2012 Phys. Rev. Lett. 108 057204
[39] Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A and Rasing Th 2009 Nat. Phys. 5 727
[1] Nonlinear three-magnon scattering in low-damping La0.67Sr0.33MnO3 thin films
Yuelin Zhang(张跃林), Lutong Sheng(盛路通), Jilei Chen(陈济雷), Jie Wang(王婕), Zengtai Zhu(朱增泰), Rundong Yuan(袁润东), Jingdi Lu(鲁京迪), Hanchen Wang(王涵晨), Sijie Hao(郝思洁), Peng Chen(陈鹏), Guoqiang Yu(于国强), Xiufeng Han(韩秀峰), and Haiming Yu(于海明). Chin. Phys. B, 2023, 32(10): 107505.
[2] Stability analysis of magnetization in a perpendicular magnetic layer driven by spin Hall effect
Zai-Dong Li(李再东), Xin-Xin Zhao(赵欣欣), and Tian-Fu Xu(徐天赋). Chin. Phys. B, 2023, 32(5): 057503.
[3] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[4] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[5] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[6] Hysteresis loss reduction in self-bias FeSi/SrFe12O19 soft magnetic composites
Shuangjiu Feng(冯双久), Jiangli Ni(倪江利), Feng Hu(胡锋), Xucai Kan(阚绪材), Qingrong Lv(吕庆荣), and Xiansong Liu(刘先松). Chin. Phys. B, 2022, 31(2): 027503.
[7] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[8] Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure
Na Li(李娜), Jin Tang(汤进), Lei Su(苏磊), Ya-Jiao Ke(柯亚娇), Wei Zhang(张伟), Zong-Kai Xie(谢宗凯), Rui Sun(孙瑞), Xiang-Qun Zhang(张向群), Wei He(何为), and Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2021, 30(11): 117502.
[9] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[10] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[11] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[12] Magnetic vortex gyration mediated by point-contact position
Hua-Nan Li(李化南), Zi-Wei Fan(笵紫薇), Jia-Xin Li(李佳欣), Yue Hu(胡月), Hui-Lian Liu(刘惠莲). Chin. Phys. B, 2019, 28(10): 107503.
[13] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[14] Detailed electronic structure of three-dimensional Fermi surface and its sensitivity to charge density wave transition in ZrTe3 revealed by high resolution laser-based angle-resolved photoemission spectroscopy
Shou-Peng Lyu(吕守鹏), Li Yu(俞理), Jian-Wei Huang(黄建伟), Cheng-Tian Lin(林成天), Qiang Gao(高强), Jing Liu(刘静), Guo-Dong Liu(刘国东), Lin Zhao(赵林), Jie Yuan(袁洁), Chuang-Tian Chen(陈创天), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2018, 27(8): 087503.
[15] Micromagnetism simulation on effects of soft phase size on Nd2Fe14B/α–Fe nanocomposite magnet with soft phase imbedded in hard phase
Yu-Qing Li(李玉卿), Ming Yue(岳明), Yi Peng(彭懿), Hong-Guo Zhang(张红国). Chin. Phys. B, 2018, 27(8): 087502.
No Suggested Reading articles found!