ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Optimization of extreme ultraviolet vortex beam based on high harmonic generation |
Bo Xiao(肖礴)1, Yi-Wen Zhao(赵逸文)1, Fang-Jing Cheng(程方晶)1, Ge-Wen Wang(王革文)1, Wei Jiang(姜威)1, Yi-Chen Wang(王一琛)1, Jie Hu(胡杰)1, Hong-Jing Liang(梁红静)2,†, and Ri Ma(马日)1,‡ |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 College of Science, Jilin Institute of Chemical Technology, Jilin 132022, China |
|
|
Abstract In high harmonic generation (HHG), Laguerre-Gaussian (LG) beams are used to generate extreme ultraviolet (XUV) vortices with well-defined orbital angular momentum (OAM), which have potential applications in fields such as microscopy and spectroscopy. An experimental study on the HHG driven by vortex and Gaussian beams is conducted in this work. It is found that the intensity of vortex harmonics is positively correlated with the laser energy and gas pressure. The structure and intensity distribution of the vortex harmonics exhibit significant dependence on the relative position between the gas jet and the laser focus. The ring-like structures observed in the vortex harmonics, and the interference of quantum paths provide an explanation for the distinct structural characteristics. Moreover, by adjusting the relative position between the jet and laser focus, it is possible to discern the contributions from different quantum paths. The optimization of the HH vortex field is applicable to the XUV, which opens up a new way for exploiting the potential in optical spin or manipulating electrons by using the photon with tunable orbital angular momentum.
|
Received: 08 December 2023
Revised: 03 February 2024
Accepted manuscript online: 22 February 2024
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
47.32.cb
|
(Vortex interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974137, 92250306, and 12304302), the National Key Program for Science and Technology Research and Development (Grant No. 2019YFA0307700), the Natural Science Foundation of Jilin Province, China (Grant Nos. YDZJ202101ZYTS157 and YDZJ202201ZYTS314), and the Scientific Research Foundation of Jilin Provincial Education Department, China (Grant No. JJKH20230283KJ). |
Corresponding Authors:
Hong-Jing Liang, Ri Ma
E-mail: lianghongjing@jlict.edu.cn;rma@jlu.edu.cn
|
Cite this article:
Bo Xiao(肖礴), Yi-Wen Zhao(赵逸文), Fang-Jing Cheng(程方晶), Ge-Wen Wang(王革文), Wei Jiang(姜威), Yi-Chen Wang(王一琛), Jie Hu(胡杰), Hong-Jing Liang(梁红静), and Ri Ma(马日) Optimization of extreme ultraviolet vortex beam based on high harmonic generation 2024 Chin. Phys. B 33 054209
|
[1] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161 [2] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M and Yuan X 2019 Light Sci. Appl. 8 90 [3] Allen L, Beijersbergen M W, Spreeuw R J and Woerdman J P 1992 Phys. Rev. A 45 8185 [4] Laabs H, Gao C and Weber H 1999 J. Mod. Opt. 46 709 [5] Bagini V, Frezza F, Santarsiero M, Schettini G and Spagnolo G S 1996 J. Mod. Opt. 43 1155 [6] Grier D G 2003 Nature 424 810 [7] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488 [8] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N and Ashrafi S 2015 Adv. Opt. Photon. 7 66 [9] Forbes K A 2019 Phys. Rev. Lett. 122 103201 [10] De Ninno G, Wtzel J, Ribič P R, et al. 2020 Nat. Photon. 14 554 [11] Tamm C and Weiss C 1990 J. Opt. Soc. Am. B 7 1034 [12] Heckenberg N, McDuff R, Smith C and White A 1992 Opt. Lett. 17 221 [13] Turnbull G A, Robertson D, Smith G, Allen L and Padgett M 1996 Opt. Commun. 127 183 [14] Forbes A, Dudley A and McLaren M 2016 Adv. Opt. Photon. 8 200 [15] Géneaux R, Camper A, Auguste T, Gobert O, Caillat J, Taieb R and Ruchon T 2016 Nat. Commun. 7 12583 [16] Hernandez-Garcia C, Picon A, San Roman J and Plaja L 2013 Phys. Rev. Lett. 111 083602 [17] Xin M, Safak K, Peng M Y, Kalaydzhyan A, Wang W T, Mucke O D, and Kartner F X 2017 Light Sci. Appl. 6 e16187 [18] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689 [19] Bostedt C, Bozek J, Bucksbaum P, Coffee R, Hastings J, Huang Z, Lee R, Schorb S, Corlett J and Denes P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 164003 [20] Winterfeldt C, Spielmann C and Gerber G 2008 Rev. Mod. Phys. 80 117 [21] Teubner U and Gibbon P 2009 Rev. Mod. Phys. 81 445 [22] Lang Y, Peng Z Y and Zhao Z X 2022 Chin. Phys. Lett. 39 114201 [23] Peng Z Y, Lang Y, Zhu Y L, Zhao J, Zhang D W, Zhao Z X and Yuan J M 2023 Chin. Phys. Lett. 40 054203 [24] Zhang C P and Miao X Y 2023 Chin. Phys. Lett. 40 124201 [25] Qiao Y, Chen J Q, Zhou S S, Chen J G, Jiang S C and Yang Y J 2024 Chin. Phys. Lett. 41 014205 [26] Ghimire S and Reis D A 2018 Nat. Phys. 15 10 [27] Popmintchev T, Chen M-C, Arpin P, Murnane M M and Kapteyn H C 2010 Nat. Photon. 4 822 [28] Zürch M, Kern C, Hansinger P, Dreischuh A and Spielmann C 2012 Nat. Phys. 8 743 [29] Patchkovskii S and Spanner M 2012 Nat. Phys. 8 707 [30] Han J X, Guan Z, Wang B Y and Jin C 2023 Chin. Phys. B 32 124210 [31] Hernández-García C, Roman J S, Plaja L and Pic on A 2015 New. J. Phys. 17 093029 [32] Wang B Y, Han J X and Jin C 2023 Chin. Phys. B 32 124208 [33] Gao J X, Yang C, Ge X C, Zheng Y H, Zeng Z N and Li R X 2023 Opt. Express 32 871 [34] Gariepy G, Leach J, Kim K T, Hammond T J, Frumker E, Boyd R W and Corkum P B 2014 Phys. Rev. Lett. 113 153901 [35] Gauthier D, Ribič P R, Adhikary G, Camper A, Chappuis C, Cucini R, DiMauro L F, Dovillaire G, Frassetto F, Géneaux R, Miotti P, Poletto L, Ressel B, Spezzani C, Stupar M, Ruchon T and De Ninno G 2017 Nat. Commun. 8 14971 [36] Kong F Q, Zhang C M, Bouchard F, Li Z Y, Brown G G, Ko D H, Hammond T J, Arissian L, Boyd R W, Karimi E and Corkum P B 2017 Nat. Commun. 8 14971 [37] Rego L, Roman J S, Picon A, Plaja L and Hernandez-Garcia C 2016 Phys. Rev. Lett. 117 163202 [38] Paufler W, Böning B and Fritzsche S 2019 Phys. Rev. A 100 013422 [39] Jin C, Li B, Wang K, Xu C, Tang X, Yu C and Lin C D 2020 Phys. Rev. A 102 033113 [40] Guan Z, Yin Z M and Jin C 2022 Phys. Rev. A 105 023107 [41] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [42] Rudawski P, Heyl C, Brizuela F, Schwenke J, Persson A, Mansten E, Rakowski R, Rading L, Campi F and Kim B 2013 Rev. Sci. Instrum. 84 073103 [43] Niu Y, Liu F Y, Liu Y, Liang H J, Yang Y J, Ma R and Ding D J 2017 Opt. Commun. 397 118 [44] Balcou P, Salières P, L’Huillier A and Lewenstein M 1997 Phys. Rev. A 55 3204 [45] Balcou P, Dederichs A S, Gaarde M B and L’Huillier A 1999 J. Phys. B:. At. Mol. Opt. Phys. 32 2973 [46] Gaarde M B, Salin F, Constant E, Balcou P, Schafer K J, Kulander K C and L’Huillier A 1999 Phys. Rev. A 59 1367 [47] Salières P, L’Huillier A and Lewenstein M 1995 Phys. Rev. Lett. 74 3776 [48] Schapper F, Holler M, Auguste T, Zaïr A, Weger M, Salières P, Gall-mann L and Keller U 2010 Opt. Express 18 2987 [49] Wang G L, Jin C, Le A T and Lin C D 2011 Phys. Rev. A 84 053404 [50] Lewenstein M, Salieres P and L’Huillier A 1995 Phys. Rev. A 52 4747 [51] Gaarde M B and Schafer K J 2002 Phys. Rev. A 65 031406 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|