Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 054211    DOI: 10.1088/1674-1056/ad34ca
INSTRUMENTATION AND MEASUREMENT Prev   Next  

High-frequency microwave cavity design for high-mass dark matter axion searches

Chi Zhang(张驰)1,2, Jia Wang(王佳)1, Chunguang Li(李春光)1, Shiguang Chen(陈石广)1,2, Hang Cheng(程航)1,2, Liang Sun(孙亮)1,3, and Yun Wu(吴云)1,2,4,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Hefei National Laboratory, Hefei 230088, China
Abstract  The haloscope based on the $\rm TM_{010}$ mode cavity is a well-established technique for detecting QCD axions. However, the method has limitations in detecting high-mass axion due to significant volume loss in the high-frequency cavity. Utilizing a higher-order mode cavity can effectively reduce the volume loss of the high-frequency cavity. The rotatable dielectric pieces as a tuning mechanism can compensate for the degradation of the form factor of the higher-order mode. Nevertheless, the introduction of dielectric causes additional volume loss. To address these issues, this paper proposes a novel design scheme by adding a central metal rod to the higher-order mode cavity tuned by dielectrics, which improves the performance of the haloscope due to the increased effective volume of the cavity detector. The superiority of the novel design is demonstrated by comparing its simulated performance with previous designs. Moreover, the feasibility of the scheme is verified by the full-wave simulation results of the mechanical design model.
Keywords:  axion      haloscope      microwave cavity  
Received:  01 February 2024      Revised:  14 March 2024      Accepted manuscript online:  18 March 2024
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  95.35.+d (Dark matter)  
Fund: Project supported in part by the Equipment Development Project for Scientific Research of the Chinese Academy of Sciences (Grant No. YJKYYQ20190049), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301800), and the National Key R&D Program of China (Grant No. 2022YFA1603904).
Corresponding Authors:  Yun Wu     E-mail:  wuyun@iphy.ac.cn

Cite this article: 

Chi Zhang(张驰), Jia Wang(王佳), Chunguang Li(李春光), Shiguang Chen(陈石广), Hang Cheng(程航), Liang Sun(孙亮), and Yun Wu(吴云) High-frequency microwave cavity design for high-mass dark matter axion searches 2024 Chin. Phys. B 33 054211

[1] Stecker F W and Shafi Q 1983 Phys. Rev. Lett. 50 928
[2] Sikivie P 1983 Phys. Rev. Lett. 51 1415
[3] Sikivie P 1985 Phys. Rev. D 32 2988
[4] Hagmann C, Sikivie P, Sullivan N, Tanner D B and Cho S I 2015 Rev. Sci. Instrum. 61 1076
[5] Asztalos S J, Carosi G, Hagmann C, Kinion D, Van Bibber K, Hotz M, Rosenberg L J, Rybka G, Hoskins J, Hwang J, Sikivie P, Tanner D B, Bradley R and Clarke J 2010 Phys. Rev. Lett. 104 041301
[6] Braine T, Cervantes R, Crisosto N, Du N, Kimes S, Rosenberg L J, Rybka G, Yang J, Bowring D, Chou A S, Khatiwada R, Sonnenschein A, Wester W, Carosi G, Woollett N, Duffy L D, Bradley R, Boutan C, Jones M, LaRoque B H, Oblath N S, Taubman M S, Clarke J, Dove A, Eddins A, O’Kelley S R, Nawaz S, Siddiqi I, Stevenson N, Agrawal A, Dixit A V, Gleason J R, Jois S, Sikivie P, Solomon J A, Sullivan N S, Tanner D B, Lentz E, Daw E J, Buckley J H, Harrington P M, Henriksen E A and Murch K W 2020 Phys. Rev. Lett. 124 101303
[7] Hoskins J, Hwang J, Martin C, Sikivie P, Sullivan N S, Tanner D B, Hotz M, Rosenberg L J, Rybka G, Wagner A, Asztalos S J, Carosi G, Hagmann C, Kinion D, Van Bibber K, Bradley R and Clarke J 2011 Phys. Rev. D 84 121302
[8] Khatiwada R, Bowring D, Chou A S, Sonnenschein A, Wester W, Mitchell D V, Braine T, Bartram C, Cervantes R, Crisosto N, Du N, Rosenberg L J, Rybka G, Yang J, Will D, Kimes S, Carosi G, Woollett N, Durham S, Duffy L D, Bradley R, Boutan C, Jones M, Laroque B H, Oblath N S, Taubman M S, Tedeschi J, Clarke J, Dove A, Hashim A, Siddiqi I, Stevenson N, Eddins A, O’Kelley S R, Nawaz S, Agrawal A, Dixit A V, Gleason J R, Jois S, Sikivie P, Sullivan N S, Tanner D B, Solomon J A, Lentz E, Daw E J, Perry M G, Buckley J H, Harrington P M, Henriksen E A, Murch K W and Hilton G C 2021 Rev. Sci. Instrum. 92 124502
[9] Buschmann M, Foster J W and Safdi B R 2020 Phys. Rev. Lett. 124 161103
[10] Klaer V B and Moore G D 2017 J. Cosmol. Astropart. Phys. 2017 049
[11] Rapidis N M, Lewis S M and van Bibber K A 2019 Rev. Sci. Instrum. 90 024706
[12] Kuo C L 2020 J. Cosmol. Astropart. Phys. 2020 010
[13] Stern I, Chisholm A A, Hoskins J, Sikivie P, Sullivan N S, Tanner D B, Carosi G and van Bibber K 2015 Rev. Sci. Instrum. 86 123305
[14] Jeong J, Youn S, Ahn S, Kim J E and Semertzidis Y K 2018 Phys. Lett. B 777 412
[15] Kim J, Youn S, Jeong J, Chung W, Kwon O and Semertzidis Y K 2020 J. Phys. G: Nucl. Part. Phys. 47 035203
[16] Read J I 2014 J. Phys. G: Nucl. Part. Phys. 41 063101
[17] Alesini D, Braggio C, Carugno G, Crescini N, D’Agostino D, Di Gioacchino D, Di Vora R, Falferi P, Gambardella U, Gatti C, Iannone G, Ligi C, Lombardi A, Maccarrone G, Ortolan A, Pengo R, Pira C, Rettaroli A, Ruoso G, Taffarello L and Tocci S 2020 Rev. Sci. Instrum. 91 094701
[18] CST Studio Suite 2021 December 2020 Dassault Systèmes Paris, France https://www.3ds.com/products/simulia/cst-studio-suite
[19] Youn S W 2017 2nd Workshop on Microwave Cavities and Detectors for Axion Research, January 10-13, 2017, California, USA
[1] Thermodynamics of warm axionic Abelian gauge inflation
Xi-Bin Li(李喜彬) and Yan-Ling Wu(武燕玲). Chin. Phys. B, 2023, 32(11): 119801.
[2] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[3] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[4] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
[5] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[6] Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard
Liu Chang (刘畅), Wang Yan-Hui (王延辉). Chin. Phys. B, 2015, 24(1): 010602.
[7] Quantum tunnelling radiation of Einstein--Maxwell--Dilaton--Axion black hole
Yang Shu-Zheng (杨树政), Jiang Qing-Quan (蒋青权), Li Hui-Ling (李慧玲). Chin. Phys. B, 2005, 14(12): 2411-2414.
No Suggested Reading articles found!