Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047801    DOI: 10.1088/1674-1056/ad09a9
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Near-field radiative heat transfer between nanoporous GaN films

Xiaozheng Han(韩晓政)1, Jihong Zhang(张纪红)1, Haotuo Liu(刘皓佗)2, Xiaohu Wu(吴小虎)3,†, and Huiwen Leng(冷惠文)1,‡
1 School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
2 Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China;
3 Thermal Science Research Center, Shandong Institute of Advanced Technology, Jinan 250100, China
Abstract  Photon tunneling effects give rise to surface waves, amplifying radiative heat transfer in the near-field regime. Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer, leading to a substantial enhancement of near-field radiative heat transfer (NFRHT). Being a direct bandgap semiconductor, GaN has high thermal conductivity and stable resistance at high temperatures, and holds significant potential for applications in optoelectronic devices. Indeed, study of NFRHT between nanoporous GaN films is currently lacking, hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT. In this work, we delve into the NFRHT of GaN nanoporous films in terms of gap distance, GaN film thickness and the vacuum filling ratio. The results demonstrate a 27.2% increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5. Moreover, the spectral heat flux exhibits redshift with increase in the vacuum filling ratio. To be more precise, the peak of spectral heat flux moves from ω = 1.31×1014 rad·s-1 to ω = 1.23×1014 rad·s-1 when the vacuum filling ratio changes from f = 0.1 to f = 0.5; this can be attributed to the excitation of surface phonon polaritons. The introduction of graphene into these configurations can highly enhance the NFRHT, and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio, which can be explained by the excitation of surface plasmon polaritons. These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control, management and thermal modulation.
Keywords:  near-field radiative heat transfer      nanoporous GaN film      surface phonon polaritons      surface plasmon polaritons  
Received:  09 August 2023      Revised:  20 October 2023      Accepted manuscript online:  04 November 2023
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52106099), the Natural Science Foundation of Shandong Province (Grant No. ZR2022YQ57), and the Taishan Scholars Program.
Corresponding Authors:  Xiaohu Wu, Huiwen Leng     E-mail:  xiaohu.wu@iat.cn;lenghw86_2022@qq.com

Cite this article: 

Xiaozheng Han(韩晓政), Jihong Zhang(张纪红), Haotuo Liu(刘皓佗), Xiaohu Wu(吴小虎), and Huiwen Leng(冷惠文) Near-field radiative heat transfer between nanoporous GaN films 2024 Chin. Phys. B 33 047801

[1] Shi K Z, Bao F L and He S L 2017 ACS Photonics 4 971
[2] Zhao B, Guizal B, Zhang Z M, Fan S H and Antezza M 2017 Phys. Rev. B 95 245437
[3] Shi K Z, Liao R, Cao G J, Bao F L and He S L 2018 Opt. Express 26 A591
[4] Liu H T, Shi K Z, Zhou K, Ai Q, Xie M and Wu X H 2023 Int. J. Heat Mass Transfer 208 124081
[5] Laura R G, Dakotah T, Rohith M, Nicolas A, Edgar M and Pramod R 2022 Phys. Rev. Lett. 129 145901
[6] Kralik T, Hanzelka P, Zobac M, Musilova V, Fort T and Horak M 2012 Phys. Rev. Lett. 109 224302
[7] Salihoglu H and Xu X F 2019 J. Quant. Spectrosc. Radiat. Transf. 222——223 115
[8] Zhou C L, Zhang Y and Yi H L 2022 Langmuir 38 7689
[9] Wang B, Zhang J H and Li C Y 2022 Results Phys. 33 105199
[10] Sun Y S, Hu Y, Shi K Z, Zhang J H, Feng D D and Wu X H 2022 Phys. Scr 97 095506
[11] He M J, Qi H, Ren Y T, Zhao Y J and Antezza M 2020 Int. J. Heat Mass Transfer 150 119305
[12] Zhang Y, Yi H L and Tan H P 2018 ACS Photonics 5 3739
[13] Yang J, Du W, Su Y S, Fu Y, Gong S X, He S L and Ma Y G 2018 Nat. Commun. 9 4033
[14] Wu H H, Huang Y, Cui L J and Zhu K Y 2019 Phys. Rev. Appl. 11 054020
[15] Hu Y, Sun Y S, Zheng Z H, Song J L, Shi K Z and Wu X H 2022 Int. J. Heat Mass Transfer 189 122666
[16] Zhou C L, Wu X H, Zhang Y and Yi H L 2021 Int. J. Heat Mass Transfer 180 121794
[17] Wu X H and Fu C J 2021 Int. J. Heat Mass Transfer 168 120908
[18] Wu X H, Fu C J and Zhang Z M 2020 J. Heat Transfer 142 072802
[19] Wu X H and Liu R Y 2020 ES Energy Environ. 10 66
[20] Shi K Z, Chen Z Y, Xu X N, Evans J L and He S L 2021 Adv. Mater. 33 2106097
[21] Liu R Y, Zhou C L, Zhang Y, Cui Z, Wu X H and Yi H L 2022 Int. J. Extrem. Manuf. 4 032002
[22] Wu X H and Fu C J 2021 J. Quant. Spectrosc. Radiat. Transf. 258 107337
[23] Yu K, Li L, Shi K Z, Liu H T, Hu Y, Zhang K H, Liu Y F and Wu X H 2023 Int. J. Heat Mass Transfer 211 124229
[24] Zhang J H, Yang B, Shi K Z, Liu H T and Wu X H 2023 Nanophotonics 12 1833
[25] Kan Y H, Zhao C Y and Zhang Z M 2020 Phys. Rev. Appl. 13 014069
[26] Zhang J H, Liu H T, Zhang K H, Cao J C and Wu X H 2023 Int. J. Heat Mass Transfer 202 123714
[27] Liu X L, Wang L P and Zhang Z M 2015 Nanoscale Microscale Thermophys. Eng. 19 98
[28] Liu X L and Zhang Z M 2015 Appl. Phys. Lett. 107 143114
[29] Basu S, Chen Y B and Zhang Z M 2007 Int. J. Energy Res. 31 689
[30] Messina R and Ben-Abdallah P 2013 Sci. Rep. 3 1383
[31] Guha B, Otey C, Poitra C B, Fan S H and Lipson M 2012 Nano Lett. 12 4546
[32] Zhao D L, Aili A, Zhai Y, Lu J T, Kidd D, Tan G, Yin X B and Yang R G 2019 Joule 3 111
[33] Cai L L, Song A Y, Li W, Hsu P C, Lin D C, Catrysse P B, Liu Y Y, Peng Y C, Chen J, Wang H X, Xu J W, Yang A K, Fan S H and Cui Y 2018 Adv. Mater. 30 1802152
[34] Inoue T, Koyama T, Kang D D, Ikeda K, Asano T and Noda S 2019 Nano Lett. 19 3948
[35] Cakiroglu D, Perez J P, Evirgen A, Lucchesi C, Lucchesi P O, Taliercio T, Tournie E and Vaillon R 2019 Sol. Energy Mater. Sol. Cells 203 110190
[36] Inoue T, Ikeda K, Song B, Suzuki T, Ishino K, Asano T and Noda S 2021 ACS Photonics 8 2466
[37] Lucchesi C, Cakiroglu D, Perez J P, Taliercio T, Tournie E, Chapuis P O and Vaillon R 2021 Nano Lett. 21 4524
[38] Biehs S A, Rosa F S S and Ben-Abdallah P 2011 Appl. Phys. Lett. 98 243102
[39] Biehs S A, Menon V M and Agarwal G S 2016 Phys. Rev. B 93 245439
[40] Lang S, Tschikin M, Biehs S A, Petrov A Y and Eich M 2014 Appl. Phys. Lett. 104 121903
[41] Lang S, Lee H S, Petrov A Y, Stormer M, Ritter M and Eich M 2013 Appl. Phys. Lett. 103 021905
[42] Xu D Y, Bilal A, Zhao J M, Liu L H and Zhang Z M 2019 Int. J. Heat Mass Transfer 142 118432
[43] Xu D Y, Zhao J M and Liu L H 2021 Appl. Phys. Lett. 119 141106
[44] Zhou C L, Yang S H, Zhang Y and Yi H L 2020 Nanoscale Microscale Thermophys. Eng. 24 168
[45] Zhou C L, Zhang Y and Yi H L 2022 Mat. Today Phys. 28 100891
[46] Biehs S A, Ben-Abdallah P, Rosa F S S, Joulain K and Greffet J J 2011 Opt. Express 19 A1088
[47] Liu X L, Zhang R Z and Zhang Z M 2014 Int. J. Heat Mass Transfer 73 389
[48] Hong X J, Li J W, Wang T B, Zhan D J, Liu W X, Liao Q H, Yu T B and Liu N H 2018 Jpn. J. Appl. Phys. 57 045001
[49] Li X H, Wang T B, Yu T B and Liao Q H 2022 Eur. Phys. J. B 95 140
[50] Beeler M, Trichas E and Monroy E 2013 Semicond. Sci. Technol. 28 074022
[51] Baliga B J 2013 Semicond. Sci. Technol. 28 074011
[52] S Chowdhury, Swenson B L, Wong M O and Mishra U K 2013 Semicond. Sci. Technol. 28 074014
[53] Cheah S F, Lee S C, Ng S S, Yam F K, Abu Hassan H and Hassan Z 2015 J. Lumin. 159 303
[54] Didari A, Elçioǧlu E B, Okutucu-Özyurt T and Mengüç M P 2018 J. Quant. Spectrosc. Radiat. Transf. 212 120
[55] Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P and Xia F N 2012 Nat. Nanotechnol. 7 330
[56] Yan J, Zhang Y B, Kim P and Pinczuk A 2007 Phys. Rev. Lett. 98 166802
[57] Ng S S, Hassan Z and Abu Hassan H 2008 Solid State Commun. 145 535
[58] Pandey A, Kumari M and Raman R 2021 Optik 225 165834
[59] Ng S S, Yoon T L, Hassan Z and Abu Hassan H 2009 Appl. Phys. Lett. 94 241912
[60] Torii K, Koga T, Sota T, Azuhata T, Chichibu S F and Nakamura S 2000 J. Phys. Condens. Matter 12 7041
[61] G Yu, Rowell N L and Lockwood D J 2004 J. Vac. Sci. Technol. A 22 1110
[62] Biehs S A, Tschikin M and Ben-Abdallah P 2012 Phys. Rev. Lett. 109 104301
[63] Liu X L, Bright T J and Zhang Z M 2014 J. Heat Transfer 136 092703
[64] Lim M, Lee S S and Lee B J 2013 Opt. Express 21 22173
[65] Saarinen J J and Sipe J E 2008 J. Mod. Optic. 55 13
[1] Tunable artificial plasmonic nanolaser with wide spectrum emission operating at room temperature
Peng Zhou(周鹏), Jia-Qi Guo(郭佳琦), Kun Liang(梁琨), Lei Jin(金磊), Xiong-Yu Liang(梁熊玉), Jun-Qiang Li(李俊强), Xu-Yan Deng(邓绪彦), Jian-Yu Qin(秦建宇), Jia-Sen Zhang(张家森), and Li Yu(于丽). Chin. Phys. B, 2024, 33(5): 054210.
[2] Active control of surface plasmon polaritons with phase change materials
Yuan-Zhen Qi(漆元臻), Qiao Jiang(蒋瞧), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(10): 104202.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[5] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[6] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[7] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[8] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[9] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[10] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[11] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[12] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[13] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[14] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[15] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
No Suggested Reading articles found!