Special Issue:
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
|
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Near-field radiative heat transfer between nanoporous GaN films |
Xiaozheng Han(韩晓政)1, Jihong Zhang(张纪红)1, Haotuo Liu(刘皓佗)2, Xiaohu Wu(吴小虎)3,†, and Huiwen Leng(冷惠文)1,‡ |
1 School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; 2 Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; 3 Thermal Science Research Center, Shandong Institute of Advanced Technology, Jinan 250100, China |
|
|
Abstract Photon tunneling effects give rise to surface waves, amplifying radiative heat transfer in the near-field regime. Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer, leading to a substantial enhancement of near-field radiative heat transfer (NFRHT). Being a direct bandgap semiconductor, GaN has high thermal conductivity and stable resistance at high temperatures, and holds significant potential for applications in optoelectronic devices. Indeed, study of NFRHT between nanoporous GaN films is currently lacking, hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT. In this work, we delve into the NFRHT of GaN nanoporous films in terms of gap distance, GaN film thickness and the vacuum filling ratio. The results demonstrate a 27.2% increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5. Moreover, the spectral heat flux exhibits redshift with increase in the vacuum filling ratio. To be more precise, the peak of spectral heat flux moves from ω = 1.31×1014 rad·s-1 to ω = 1.23×1014 rad·s-1 when the vacuum filling ratio changes from f = 0.1 to f = 0.5; this can be attributed to the excitation of surface phonon polaritons. The introduction of graphene into these configurations can highly enhance the NFRHT, and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio, which can be explained by the excitation of surface plasmon polaritons. These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control, management and thermal modulation.
|
Received: 09 August 2023
Revised: 20 October 2023
Accepted manuscript online: 04 November 2023
|
PACS:
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52106099), the Natural Science Foundation of Shandong Province (Grant No. ZR2022YQ57), and the Taishan Scholars Program. |
Corresponding Authors:
Xiaohu Wu, Huiwen Leng
E-mail: xiaohu.wu@iat.cn;lenghw86_2022@qq.com
|
Cite this article:
Xiaozheng Han(韩晓政), Jihong Zhang(张纪红), Haotuo Liu(刘皓佗), Xiaohu Wu(吴小虎), and Huiwen Leng(冷惠文) Near-field radiative heat transfer between nanoporous GaN films 2024 Chin. Phys. B 33 047801
|
[1] Shi K Z, Bao F L and He S L 2017 ACS Photonics 4 971 [2] Zhao B, Guizal B, Zhang Z M, Fan S H and Antezza M 2017 Phys. Rev. B 95 245437 [3] Shi K Z, Liao R, Cao G J, Bao F L and He S L 2018 Opt. Express 26 A591 [4] Liu H T, Shi K Z, Zhou K, Ai Q, Xie M and Wu X H 2023 Int. J. Heat Mass Transfer 208 124081 [5] Laura R G, Dakotah T, Rohith M, Nicolas A, Edgar M and Pramod R 2022 Phys. Rev. Lett. 129 145901 [6] Kralik T, Hanzelka P, Zobac M, Musilova V, Fort T and Horak M 2012 Phys. Rev. Lett. 109 224302 [7] Salihoglu H and Xu X F 2019 J. Quant. Spectrosc. Radiat. Transf. 222——223 115 [8] Zhou C L, Zhang Y and Yi H L 2022 Langmuir 38 7689 [9] Wang B, Zhang J H and Li C Y 2022 Results Phys. 33 105199 [10] Sun Y S, Hu Y, Shi K Z, Zhang J H, Feng D D and Wu X H 2022 Phys. Scr 97 095506 [11] He M J, Qi H, Ren Y T, Zhao Y J and Antezza M 2020 Int. J. Heat Mass Transfer 150 119305 [12] Zhang Y, Yi H L and Tan H P 2018 ACS Photonics 5 3739 [13] Yang J, Du W, Su Y S, Fu Y, Gong S X, He S L and Ma Y G 2018 Nat. Commun. 9 4033 [14] Wu H H, Huang Y, Cui L J and Zhu K Y 2019 Phys. Rev. Appl. 11 054020 [15] Hu Y, Sun Y S, Zheng Z H, Song J L, Shi K Z and Wu X H 2022 Int. J. Heat Mass Transfer 189 122666 [16] Zhou C L, Wu X H, Zhang Y and Yi H L 2021 Int. J. Heat Mass Transfer 180 121794 [17] Wu X H and Fu C J 2021 Int. J. Heat Mass Transfer 168 120908 [18] Wu X H, Fu C J and Zhang Z M 2020 J. Heat Transfer 142 072802 [19] Wu X H and Liu R Y 2020 ES Energy Environ. 10 66 [20] Shi K Z, Chen Z Y, Xu X N, Evans J L and He S L 2021 Adv. Mater. 33 2106097 [21] Liu R Y, Zhou C L, Zhang Y, Cui Z, Wu X H and Yi H L 2022 Int. J. Extrem. Manuf. 4 032002 [22] Wu X H and Fu C J 2021 J. Quant. Spectrosc. Radiat. Transf. 258 107337 [23] Yu K, Li L, Shi K Z, Liu H T, Hu Y, Zhang K H, Liu Y F and Wu X H 2023 Int. J. Heat Mass Transfer 211 124229 [24] Zhang J H, Yang B, Shi K Z, Liu H T and Wu X H 2023 Nanophotonics 12 1833 [25] Kan Y H, Zhao C Y and Zhang Z M 2020 Phys. Rev. Appl. 13 014069 [26] Zhang J H, Liu H T, Zhang K H, Cao J C and Wu X H 2023 Int. J. Heat Mass Transfer 202 123714 [27] Liu X L, Wang L P and Zhang Z M 2015 Nanoscale Microscale Thermophys. Eng. 19 98 [28] Liu X L and Zhang Z M 2015 Appl. Phys. Lett. 107 143114 [29] Basu S, Chen Y B and Zhang Z M 2007 Int. J. Energy Res. 31 689 [30] Messina R and Ben-Abdallah P 2013 Sci. Rep. 3 1383 [31] Guha B, Otey C, Poitra C B, Fan S H and Lipson M 2012 Nano Lett. 12 4546 [32] Zhao D L, Aili A, Zhai Y, Lu J T, Kidd D, Tan G, Yin X B and Yang R G 2019 Joule 3 111 [33] Cai L L, Song A Y, Li W, Hsu P C, Lin D C, Catrysse P B, Liu Y Y, Peng Y C, Chen J, Wang H X, Xu J W, Yang A K, Fan S H and Cui Y 2018 Adv. Mater. 30 1802152 [34] Inoue T, Koyama T, Kang D D, Ikeda K, Asano T and Noda S 2019 Nano Lett. 19 3948 [35] Cakiroglu D, Perez J P, Evirgen A, Lucchesi C, Lucchesi P O, Taliercio T, Tournie E and Vaillon R 2019 Sol. Energy Mater. Sol. Cells 203 110190 [36] Inoue T, Ikeda K, Song B, Suzuki T, Ishino K, Asano T and Noda S 2021 ACS Photonics 8 2466 [37] Lucchesi C, Cakiroglu D, Perez J P, Taliercio T, Tournie E, Chapuis P O and Vaillon R 2021 Nano Lett. 21 4524 [38] Biehs S A, Rosa F S S and Ben-Abdallah P 2011 Appl. Phys. Lett. 98 243102 [39] Biehs S A, Menon V M and Agarwal G S 2016 Phys. Rev. B 93 245439 [40] Lang S, Tschikin M, Biehs S A, Petrov A Y and Eich M 2014 Appl. Phys. Lett. 104 121903 [41] Lang S, Lee H S, Petrov A Y, Stormer M, Ritter M and Eich M 2013 Appl. Phys. Lett. 103 021905 [42] Xu D Y, Bilal A, Zhao J M, Liu L H and Zhang Z M 2019 Int. J. Heat Mass Transfer 142 118432 [43] Xu D Y, Zhao J M and Liu L H 2021 Appl. Phys. Lett. 119 141106 [44] Zhou C L, Yang S H, Zhang Y and Yi H L 2020 Nanoscale Microscale Thermophys. Eng. 24 168 [45] Zhou C L, Zhang Y and Yi H L 2022 Mat. Today Phys. 28 100891 [46] Biehs S A, Ben-Abdallah P, Rosa F S S, Joulain K and Greffet J J 2011 Opt. Express 19 A1088 [47] Liu X L, Zhang R Z and Zhang Z M 2014 Int. J. Heat Mass Transfer 73 389 [48] Hong X J, Li J W, Wang T B, Zhan D J, Liu W X, Liao Q H, Yu T B and Liu N H 2018 Jpn. J. Appl. Phys. 57 045001 [49] Li X H, Wang T B, Yu T B and Liao Q H 2022 Eur. Phys. J. B 95 140 [50] Beeler M, Trichas E and Monroy E 2013 Semicond. Sci. Technol. 28 074022 [51] Baliga B J 2013 Semicond. Sci. Technol. 28 074011 [52] S Chowdhury, Swenson B L, Wong M O and Mishra U K 2013 Semicond. Sci. Technol. 28 074014 [53] Cheah S F, Lee S C, Ng S S, Yam F K, Abu Hassan H and Hassan Z 2015 J. Lumin. 159 303 [54] Didari A, Elçioǧlu E B, Okutucu-Özyurt T and Mengüç M P 2018 J. Quant. Spectrosc. Radiat. Transf. 212 120 [55] Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P and Xia F N 2012 Nat. Nanotechnol. 7 330 [56] Yan J, Zhang Y B, Kim P and Pinczuk A 2007 Phys. Rev. Lett. 98 166802 [57] Ng S S, Hassan Z and Abu Hassan H 2008 Solid State Commun. 145 535 [58] Pandey A, Kumari M and Raman R 2021 Optik 225 165834 [59] Ng S S, Yoon T L, Hassan Z and Abu Hassan H 2009 Appl. Phys. Lett. 94 241912 [60] Torii K, Koga T, Sota T, Azuhata T, Chichibu S F and Nakamura S 2000 J. Phys. Condens. Matter 12 7041 [61] G Yu, Rowell N L and Lockwood D J 2004 J. Vac. Sci. Technol. A 22 1110 [62] Biehs S A, Tschikin M and Ben-Abdallah P 2012 Phys. Rev. Lett. 109 104301 [63] Liu X L, Bright T J and Zhang Z M 2014 J. Heat Transfer 136 092703 [64] Lim M, Lee S S and Lee B J 2013 Opt. Express 21 22173 [65] Saarinen J J and Sipe J E 2008 J. Mod. Optic. 55 13 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|