Special Issue:
SPECIAL TOPIC — States and new effects in nonequilibrium
|
SPECIAL TOPIC—States and new effects in nonequilibrium |
Prev
Next
|
|
|
Ultrafast magneto-optical dynamics in nickel (111) single crystal studied by the integration of ultrafast reflectivity and polarimetry probes |
Hao Kuang(匡皓)1,2, Junxiao Yu(余军潇)3, Jie Chen(陈洁)3, H. E. Elsayed-Ali4, Runze Li(李润泽)1,2,†, and Peter M. Rentzepis5,‡ |
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China; 3 Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 4 Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; 5 Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA |
|
|
Abstract With the integration of ultrafast reflectivity and polarimetry probes, we observed carrier relaxation and spin dynamics induced by ultrafast laser excitation of Ni (111) single crystals. The carrier relaxation time within the linear excitation range reveals that electron-phonon coupling and dissipation of photon energy into the bulk of the crystal take tens of picoseconds. On the other hand, the observed spin dynamics indicate a longer time of about 120 ps. To further understand how the lattice degree of freedom is coupled with these dynamics may require the integration of an ultrafast diffraction probe.
|
Received: 28 November 2023
Revised: 27 December 2023
Accepted manuscript online: 29 December 2023
|
PACS:
|
78.47.J-
|
(Ultrafast spectroscopy (<1 psec))
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
75.78.Jp
|
(Ultrafast magnetization dynamics and switching)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1604402 and 2022YFA1604403), the National Natural Science Foundation of China (NSFC) (Grant No. 11721404), the Shanghai Rising-Star Program (Grant No. 21QA1406100), and the Technology Innovation Action Plan of the Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1416000). Dr Rentzepis acknowledges support by the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-20-1- 0139) and the Texas A&M Engineering Experimental Station (TEES). Dr Li thanks the Shanghai Soft X-ray Free Electron Laser Project for providing the Ti:sapphire laser time to perform this study. |
Corresponding Authors:
Runze Li, Peter M. Rentzepis
E-mail: lirz@shanghaitech.edu.cn;prentzepis@tamu.edu
|
Cite this article:
Hao Kuang(匡皓), Junxiao Yu(余军潇), Jie Chen(陈洁), H. E. Elsayed-Ali, Runze Li(李润泽), and Peter M. Rentzepis Ultrafast magneto-optical dynamics in nickel (111) single crystal studied by the integration of ultrafast reflectivity and polarimetry probes 2024 Chin. Phys. B 33 037802
|
[1] Kirilyuk A, Kimel A V and Rasing T 2010 Rev. Mod. Phys. 82 2731 [2] Tengdin P, You W, Chen C, Shi X, Zusin D, Zhang Y, Gentry G, Blonsky A, Keller M, Oppeneer P M, Kapteyn H C, Tao Z and Murnane M M 2018 Sci. Adv. 4 eaap9744 [3] Beaurepaire E, Merle J C, Daunois A and Bigot J Y 1996 Phys. Rev. Lett. 76 4250 [4] van Hees Y L W, Koopmans B and Lavrijsen R 2022 Appl. Phys. Lett. 120 252401 [5] Dornes C, Acremann y, Savoini M, Kubli M, Neugebauer M J, Abreu E, Huber L, Lantz G, Vaz C A F, Lemke H, Bothschafter E M, Porer M, Esposito V, Rettig L, Buzzi M, Alberca A, Windsor Y W, Beaud P, Staub U, Zhu D, Song S, Glownia J M and Johnson S L 2019 Nature 565 209 [6] Güdde J, Conrad U, Jähnke V, Hohlfeld J and Matthias E 1999 Phys. Rev. B 59 R6608(R) [7] Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L, Ma X, Xue Q K and Zhao J 2016 Phys. Rev. Lett. 116 107001 [8] Hu L L, Yang M, Wu Y L, Wu Q, Zhao H, Sun F, Wang W, He R, He S L, Zhang H, Huang R J, Li L F, Shi Y G and Zhao J 2019 Phys. Rev. B 99 094307 [9] Wu Q, Zhou H, Wu Y, Hu L, Ni S, Tian Y, Sun F, Zhou F, Dong X, Zhao Z and Zhao J 2020 Chin. Phys. Lett. 37 097802 [10] Sheu Y M, Chang Y M, Chang C P, Li Y H, Babu K R, Guo G Y, Kurumaji T and Tokura Y 2019 Phys. Rev. X 9 031038 [11] Afanasiev D, Hortensius J R, Ivanov B A, Sasani A, Bousquet E, Blanter Y M, Mikhaylovskiy R V, Kimel A V and Caviglia A D 2021 Nat. Mater. 20 607 [12] Hortensius J R, Afanasiev D, Matthiesen M, Leenders R, Citro R, Kimel A V, Mikhaylovskiy R V, Ivanov B A and Caviglia A D 2021 Nat. Phys. 17 489 [13] van Kampen M, Jozsa C, Kohlhepp J T, LeClair P, Lagae L, de Jonge W J M and Koopmans B 2002 Phys. Rev. Lett. 88 227201 [14] Sun F, Zhang T, Yi C J, Wu Y L, Zhao H, Wu Q, Shi Y G, Weng H and Zhao J 2021 Phys. Rev. B 104 L100301 [15] Tauchert S R, Volkov M, Ehberger D, Kazenwadel D, Evers M, Lange H, Donges A, Book A, Kreuzpaintner W, Nowak U and Baum P 2022 Nature 602 73 [16] Zong A, Zhang Q, Zhou F, Su Y, Hwangbo K, Shen X, Jiang Q, Liu H, Gage T E, Walko D A, Kozina M E, Luo D, Reid A H, Yang J, Park S, Lapidus S H, Chu J H, Arslan I, Wang X, Xiao D, Xu X, Gedik N and Wen H 2023 Nature 620 988 [17] Smith A N and Norris P M 2001 Appl. Phys. Lett. 78 1240 [18] de la Torre A, Kennes D M, Claassen M, Gerber S, McIver J W and Sentef M A 2021 Rev. Mod. Phys. 93 041002 [19] Windsor Y W, Zahn D, Kamrla R, Feldl J, Seiler H, Chiang C T, Ramsteiner M, Widdra W, Ernstorfer R and Rettig L 2021 Phys. Rev. Lett. 126 147202 [20] Giri A and Hopkins P E 2015 J. Appl. Phys. 118 215101 [21] Kim J W, Vomir M and Bigot J Y 2012 Phys. Rev. Lett. 109 166601 [22] Wang X, Nie S, Li J, Clinite R, Clark J E and Cao J 2010 Phys. Rev. B 81 220301 [23] van Kampen M, Kohlhepp J T, de Jonge W J M, Koopmans B and Coehoorn R 2005 J. Phys.: Condens. Matter 17 6823 [24] Gilbert T L 2004 IEEE Transactions on Magnetics 40 3443 [25] Li R, Elsayed-Ali H E, Chen J, Dhankhar D, Krishnamoorthi A and Rentzepis P M 2019 The Journal of Chemical Physics 151 124702 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|