Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057301    DOI: 10.1088/1674-1056/ad2d54
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Manipulation of internal blockage in triangular triple quantum dot

Yue Qi(齐月) and Jian-Hua Wei(魏建华)†
Department of Physics, Renmin University, Beijing 100876, China
Abstract  We utilize the calculation of hierarchical equations of motion to demonstrate that the spin-dependent properties between adjacent quantum dots (QDs) can be changed by breaking the internal symmetry configuration, corresponding to the inversion of dominant chiral states. In the linear triple quantum dots (LTQDs) connected to two electron reservoirs, we can observe that the blockage appears at the triangle triple quantum dots (TTQDs) by gradually increasing the coupling strength between next-nearest double QDs. When the initial coupling between LTQDs has altered, the internal chiral circulation also undergoes the corresponding transform, thus achieving qualitative regulation and detection of the blocking region. We also investigate the response of the chiral circulation to the dot-lead coupling strength, indicating the overall robust chiral circulation of the TTQDs frustration.
Keywords:  quantum dots      chiral topology blocking  
Received:  16 October 2023      Revised:  04 February 2024      Accepted manuscript online:  27 February 2024
PACS:  73.21.La (Quantum dots)  
  75.10.Pq (Spin chain models)  
  64.70.Tg (Quantum phase transitions)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12274454, 11774418, 11374363, 11674317, 11974348, 11834014, and 21373191), the Strategic Priority Research Program of CAS (Grant Nos. XDB28000000 and XDB33000000), the National Natural Science Foundation of China (Grant No. 11974348), the Training Program of Major Research Plan of NSFC (Grant No. 92165105), and the Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University of China.
Corresponding Authors:  Jian-Hua Wei     E-mail:  wjh@ruc.edu.cn

Cite this article: 

Yue Qi(齐月) and Jian-Hua Wei(魏建华) Manipulation of internal blockage in triangular triple quantum dot 2024 Chin. Phys. B 33 057301

[1] Hou Z, Zhang Q, Zhang X, et al. 2020 Adv. Mater. 32 1904815
[2] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463
[3] Zhang X, Xia J, Zhou Y, Liu X, Zhang H and Ezawa M 2017 Nat. Commun. 8 1717
[4] Psaroudaki C and Panagopoulos C 2021 Phys. Rev. Lett. 127 067201
[5] Lee P A 2007 t-j model and the gauge theory description of underdoped cuprates. In: Handbook of High-Temperature Superconductivity (Berlin: Springer) p. 527
[6] Hsieh C Y, Rene A and Hawrylak P 2012 Phys. Rev. B 86 115312
[7] Wang Y, Zhu Z, Wei J and Yan Y 2020 Europhys. Lett. 130 17003
[8] Scarola V and Sarma S D 2005 Phys. Rev. A 71 032340
[9] Ward D R, Kim D, Savage D E, Lagally M G, Foote R H, Friesen M, Coppersmith S N and Eriksson M A 2016 npj Quantum Inf. 2 16032
[10] Gimenez I P, Hsieh C Y, Korkusinski M and Hawrylak P 2009 Phys. Rev. B 79 205311
[11] Saraga D S and Loss D 2003 Phys. Rev. Lett. 90 166803
[12] Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
[13] Akagi Y and Motome Y 2010 J. Phys. Soc. Jpn. 79 083711
[14] Koga M, Matsumoto M and Kusunose H 2014 J. Phys. Soc. Jpn. 83 084707
[15] Liang W, Shores M P, Bockrath M, Long J R and Park H 2016 Nature 417 725
[16] Tatara G and Kawamura H 2002 J. Phys. Soc. Jpn. 71 2613
[17] Tatara G and Kohno H 2003 Phys. Rev. B 67 113316
[18] Tatara G, Kohno H and Shibata J 2008 Phys. Rep. 468 213
[19] Tatara G 2019 Physica E 106 208
[20] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[21] Taguchi K and Tatara G 2009 Phys. Rev. B 79 054423
[22] Zhang S S, Ishizuka H, Zhang H, Halasz G B and Batista C D ′ 2020 Phys. Rev. B 101 024420
[23] Hsieh C Y, Rene A and Hawrylak P 2011 Phys. Rev. B 86 115312
[24] Liu Y M, Wang Y D and Wei J H 2022 Chin. Phys. B 31 057201
[25] Cheng Y, Wang Y, Wei J, Zhu Z and Yan Y 2017 Phys. Rev. B 95 155417
[26] MacDonald A H, Girvin S and Yoshioka D 1988 Phys. Rev. B 37 9753
[27] Qi Y, Liu Y M, Wang Y D, Wei J H and Zhu Z G 2023 Chin. Phys. B 32 087304
[28] Vernek E, Büsser C, Martins G, Anda E, Sandler N and Ulloa S 2009 Phys. Rev. B 80 035119
[29] Koga M, Matsumoto M and Kusunose H 2012 J. Phys. Soc. Jpn. 81 123703
[30] Oguri A, Amaha S, Nishikawa Y, Numata T, Shimamoto M, Hewson A and Tarucha S 2011 Phys. Rev. B 83 205304
[31] Lorke A, Kotthaus J and Ploog K 1990 Phys. Rev. Lett. 64 2559
[32] Childress L, Sørensen A and Lukin M D 2004 Phys. Rev. A 69 042302
[33] Shim Y P 2022 J. Appl. Phys. 132 064402
[34] Liu Y, Chen Y and Wang Z 2010 Solid State Commun. 150 1136
[35] Li Z, Cheng Y, Wei J, Zheng X and Yan Y 2018 Phys. Rev. B 98 115133
[36] Li Z, Tong N, Zheng X, Hou D, Wei J, Hu J and Yan Y 2012 Phys. Rev. Lett. 109 266403
[37] Hou D, Wang R, Zheng X, Tong N, Wei J and Yan Y 2014 Phys. Rev. B 90 045141
[38] Byers N and Yang C 1961 Phys. Rev. Lett. 7 46
[39] Li Z H, Tong N, Zheng X, Hou D, Wei J, Hu J and Yan Y 2009 Phys. Rev. Lett. 109 266403
[40] Okamoto J I, Mathey L and Haertle R 2016 Phys. Rev. B 94 235411
[41] Hu J, Luo M, Jiang F, Xu R X and Yan Y J 2011 J. Chem. Phys. 134 101106
[42] Feynman R P and Vernon F L 2000 Ann. Phys. 281 547
[43] Feynman R P and Jr F V 1987 Ann. Phys. 281 547
[44] Jin J, Zheng X and Yan Y 2008 J. Chem. Phys. 128 234703
[45] Ye L Z, Wang X, Hou D, Xu R X, Zheng X and Yan Y 2011 WIR Comput. Mol. Sci. 133 101106
[46] Waugh F, Berry M, Mar D, Westervelt R, Campman K and Gossard A 1995 Phys. Rev. Lett. 75 705
[47] Xia J, Zhang X, Liu X, Zhou Y and Ezawa M 2023 Phys. Rev. Lett. 130 106701
[48] Weymann I, Bułka B and Barnas J 2011 Phys. Rev. B 83 195302
[49] Łuczak J and Bułka B R 2017 Quantum Inf. Process. 16 10
[1] Photostability of colloidal single photon emitter in near-infrared regime at room temperature
Si-Yue Jin(靳思玥) and Xing-Sheng Xu(许兴胜). Chin. Phys. B, 2024, 33(3): 036102.
[2] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[3] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[4] Delayed response to the photovoltaic performance in a double quantum dots photocell with spatially correlated fluctuation
Sheng-Nan Zhu(祝胜男), Shun-Cai Zhao(赵顺才), Lu-Xin Xu(许路昕), and Lin-Jie Chen(陈林杰). Chin. Phys. B, 2023, 32(5): 057302.
[5] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[6] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[7] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[8] Real-time dynamics in strongly correlated quantum-dot systems
Yong-Xi Cheng(程永喜), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2023, 32(12): 127302.
[9] Materials and device engineering to achieve high-performance quantum dots light emitting diodes for display applications
Changfeng Han(韩长峰), Ruoxi Qian(钱若曦), Chaoyu Xiang(向超宇), and Lei Qian(钱磊). Chin. Phys. B, 2023, 32(12): 128506.
[10] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[11] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[12] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[13] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[14] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!