Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057302    DOI: 10.1088/1674-1056/ad260c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of strain on structure and electronic properties of monolayer C4N4

Hao Chen(陈昊)1, Ying Xu(徐瑛)1, Jia-Shi Zhao(赵家石)2,†, and Dan Zhou(周丹)1,‡
1 School of Physics, Changchun University of Science and Technology, Changchun 130022, China;
2 School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
Abstract  The first-principles calculations are performed to examine structural, mechanical, and electronic properties at large strain for a monolayer C$_{4}$N$_{4}$, which has been predicted as an anchoring promising material to attenuate shuttle effect in Li-S batteries stemming from its large absorption energy and low diffusion energy barrier. Our results show that the ideal strengths of C$_{4}$N$_{4}$ under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28, respectively. The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C$_{4}$N$_{4}$. The orderly bond-rearranging behaviors under the weak tensile loading path along the [100] direction cause the impressive semiconductor-metal transition and inverse semiconductor-metal transition. The present results enrich the knowledge of the structure and electronic properties of C$_{4}$N$_{4}$ under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.
Keywords:  two-dimensional materials      strain effect      structural evolution      electronic properties  
Received:  17 November 2023      Revised:  26 January 2024      Accepted manuscript online:  05 February 2024
PACS:  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  77.80.bn (Strain and interface effects)  
  83.10.Tv (Structural and phase changes)  
  87.15.Pc (Electronic and electrical properties)  
Fund: Project support by the National Natural Science Foundation of China (Grant Nos. 11704044 and 12074140).
Corresponding Authors:  Jia-Shi Zhao, Dan Zhou     E-mail:  zhaojiashi@cust.edu.cn;zhoudan@cust.edu.cn

Cite this article: 

Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹) Effect of strain on structure and electronic properties of monolayer C4N4 2024 Chin. Phys. B 33 057302

[1] Xu R, Zhai H, Wang D, Song X Q, Zhou D and Li Q 2023 ACS Mater. Lett. 5 2747
[2] Gu Z, Yu S, Xu Z, Wang Q, Duan T, Wang X, Liu S, Wang H and Du H 2022 Chin. Phys. B 31 086107
[3] Li Y, Zhu S, Wu E, Ding H, Lu J, Mu X, Chen L, Zhang Y, Palisaitis J, Chen K, Li M, Yan P, Persson P O Å, Hultman L, Eklund P, Du S, Kuang Y, Chai Z and Huang Q 2023 J. Phys. Chem. Lett. 14 481
[4] Shen J, Duan Q, Miao J, He S, He K, Dai W and Lu C 2023 Chin. Phys. B 32 096302
[5] Fan Y, Li L, Zhang Y, Zhang X, Geng D and Hu W 2022 Adv. Funct. Mater. 32 2111357
[6] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[7] Hu C W, Yang Y, Hou C and Liang T X 2021 Comput. Mater. Sci. 194 110424
[8] Yuan H, Zhang W, Wang J G, Zhou G, Zhuang Z, Luo J, Huang H, Gan Y, Liang C, Xia Y, Zhang J and Tao X 2018 Energy Storage Mater. 10 1
[9] Li X and Zhi L 2018 Chem. Soc. Rev. 47 3189
[10] Shao B, Jiang X, Berges J, Meng S and Huang B 2023 Chin. Phys. Lett. 40 087303
[11] Luo Y, Wu M, Zhang D, Liu J, He Y, Zhang W, Liu S, Dong Y, Xiang C, Yang L, Liu H, Shu H, Wang X and Chen M 2023 ACS Sustain. Chem. 11 1087
[12] He C, Liang Y and Zhang W 2022 ACS Appl. Mater. Interfaces 14 29120
[13] Li T, He C and Zhang W 2019 J. Mater. Chem. A 7 4134
[14] Sun C, Guo W and Yao Y 2022 Chin. Phys. Lett. 39 087101
[15] Miao Y, Zhao Y, Zhang S, Shi R and Zhang T 2022 Adv. Mater. 34 2200868
[16] Liu C, Song X, Li Q, Ma Y and Chen C 2021 Chin. Phys. Lett. 38 086301
[17] Liu C F and Wang J 2022 Chin. Phys. Lett. 39 077301
[18] Ma J J, Wang Z Y, Xu S G, Gao Y X, Zhang Y Y, Dai Q, Lin X, Du S X, Ren J D and Gao H J 2022 Chin. Phys. Lett. 39 047403
[19] Liu L, Zhang S and Zhang H 2022 Chin. Phys. Lett. 39 056102
[20] Liu C, Song X, Li Q, Ma Y and Chen C 2019 Phys. Rev. Lett. 123 195504
[21] Liu C, Song X, Li Q, Ma Y and Chen C 2020 Phys. Rev. Lett. 124 147001
[22] Liu C, Zhai H, Sun Y, Gong W, Yan Y, Li Q and Zheng W 2018 Phys. Chem. Chem. Phys. 20 5952
[23] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[24] Hongzhiwei Technology D S, Version 2021A, China, 2021. Available online: https://iresearch.net.cn/cloudSoftware
[25] Wang Z, Li Z, Zhang Y and Liu W 2020 J. Chem. Phys. 153 164109
[26] Blöchl P E 1994 Phys. Rev. B 50 17953
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[30] Pan Z, Sun H and Chen C 2007 Phys. Rev. Lett. 98 135505
[31] Pan Z, Sun H, Zhang Y and Chen C 2009 Phys. Rev. Lett. 102 055503
[32] Ogata S, Li J, Hirosaki N, Shibutani Y and Yip S 2004 Phys. Rev. B 70 104104
[33] Roundy D, Krenn C R, Cohen M L and Morris J W 1999 Phys .Rev. Lett. 82 2713
[34] An Q, Goddard W A and Cheng T 2014 Phys. Rev. Lett. 113 095501
[35] Han Z, Liu H, Li Q, Zhou D and Lv J 2021 Chin. Phys. Lett. 38 046201
[36] Zhang Y, Sun H and Chen C 2006 Phys. Rev. B 73 144115
[37] Telling R H, Pickard C J, Payne M C and Field J E 2000 Phys. Rev. Lett. 84 5160
[38] Liang H, Li H, Li Q and Chen C 2020 Phys. Rev. B 102 134105
[39] Fang R, Lu C, Chen A, Wang K, Huang H, Gan Y, Liang C, Zhang J, Tao X, Xia Y and Zhang W 2020 ChemSusChem 13 1409
[40] Carvalho A, Wang M, Zhu X, Rodin A S, Su H and Neto A C 2016 Nat. Rev. Mater. 1 16061
[41] Muralidharan N, Carter R, Oakes L, Cohn A P and Pint C L 2016 Sci. Rep. 6 27542
[42] Amit B, Daniel B, Zhang H T, Muk-Fung Y, Liu J B, Dong J C, Ding F, Lu J, Dao M, Zhang W J, Lu Y and Subra S 2018 Science 360 300
[43] Anmin N, Bu Y Q, Li P H, Zhang Y Z, Jin T Y, Liu J B, Zhang S, Wang Y B, He J L, Liu Z Y, Wang H T, Tian Y J and Yang W 2019 Nat. Commun. 10 5533
[44] Dang C, Chou J P, Dai B, Chou C T, Yang Y, Fan R, Lin W, Meng F, Hu A, Zhu J. Han J, Minor A M, Li J and Lu Y 2021 Science 371 76
[1] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[2] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[3] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[4] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[5] Corrigendum to “Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
Zhi-Yuan Li(李志远) and Jianfeng Chen(陈剑锋). Chin. Phys. B, 2024, 33(2): 029901.
[6] Progress on two-dimensional ferrovalley materials
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新). Chin. Phys. B, 2024, 33(1): 017505.
[7] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[8] Strain effects on Li+ diffusion in solid electrolyte interphases: A molecular dynamics study
Xiang Ji(姬祥) and Junqian Zhang(张俊乾). Chin. Phys. B, 2023, 32(6): 066601.
[9] Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions
Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航). Chin. Phys. B, 2023, 32(6): 066102.
[10] Continuous modulation of charge-spin conversion by electric field in Pt/Co2FeSi/Pb(Mg1/3Nb2/3)O3-Pb0.7Ti0.3O3 heterostructures
Yibing Zhao(赵逸冰), Xiaoxiao Fang(方晓筱), Zhirui Wang(王志睿), Miao Cheng(程淼), Yongjia Tan(谭永嘉), Dongxiong Wei(韦东雄), Changjun Jiang(蒋长军), and Jinli Yao(幺金丽). Chin. Phys. B, 2023, 32(5): 056701.
[11] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[12] Magnetic and magnetotransport properties of layered TaCoTe2 single crystals
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2023, 32(12): 127303.
[13] Modulated optical and ferroelectric properties in a lateral structured ferroelectric/semiconductor van der Waals heterojunction
Shanshan Chen(陈珊珊), Xinhao Zhang(张新昊), Guangcan Wang(王广灿), Shuo Chen(陈朔), Heqi Ma(马和奇), Tianyu Sun(孙天瑜), Baoyuan Man(满宝元), and Cheng Yang(杨诚). Chin. Phys. B, 2023, 32(12): 127301.
[14] Recent progress on two-dimensional ferroelectrics: Material systems and device applications
Zhiwei Fan(范芷薇), Jingyuan Qu(渠靖媛), Tao Wang(王涛), Yan Wen(温滟), Ziwen An(安子文), Qitao Jiang(姜琦涛), Wuhong Xue(薛武红), Peng Zhou(周鹏), and Xiaohong Xu(许小红). Chin. Phys. B, 2023, 32(12): 128508.
[15] Multifunctional light-field modulation based on hybrid nonlinear metasurfaces
Shuhang Qian(钱树航), Kai Wang(王凯), Jiaxing Yang(杨加兴), Chao Guan(关超), Hua Long(龙华), and Peixiang Lu(陆培祥). Chin. Phys. B, 2023, 32(10): 107803.
No Suggested Reading articles found!