CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Facile integration of an Al-rich Al1-xInxN photodetector on free-standing GaN by radio-frequency magnetron sputtering |
Xinke Liu(刘新科)1, Zhichen Lin(林之晨)1, Yuheng Lin(林钰恒)1, Jianjin Chen(陈建金)2, Ping Zou(邹苹)1, Jie Zhou(周杰)1, Bo Li(李博)1, Longhai Shen(沈龙海)2, Deliang Zhu(朱德亮)1, Qiang Liu(刘强)3, Wenjie Yu(俞文杰)3, Xiaohua Li(黎晓华)1, Hong Gu(顾泓)4, Xinzhong Wang(王新中)5, and Shuangwu Huang(黄双武)1,† |
1 College of Materials Science and Engineering, Institute of Microelectronics(IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China; 2 School of Science, Shenyang Ligong University, Shenyang 110159, China; 3 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 4 Gusu Laboratory of Materials Science, Suzhou 215123, China; 5 Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China |
|
|
Abstract Al1-xInxN, a III-nitride semiconductor material, is currently of great research interest due to its remarkable physical properties and chemical stability. When the Al and In compositions are tuned, its band-gap energy varies from 0.7 eV to 6.2 eV, which shows great potential for application in photodetectors. Here, we report the fabrication and performance evaluation of integrated Al1-xInxN on a free-standing GaN substrate through direct radio-frequency magnetron sputtering. The optical properties of Al1-xInxN will be enhanced by the polarization effect of a heterostructure composed of Al1-xInxN and other III-nitride materials. An Al1-xInxN/GaN visible-light photodetector was prepared by semiconductor fabrication technologies such as lithography and metal deposition. The highest photoresponsivity achieved was 1.52 A·W-1 under 365 nm wavelength illumination and the photodetector was determined to have the composition Al0.75In0.25N/GaN. A rise time of 0.55 s was observed after transient analysis of the device. The prepared Al1-xInxN visible-light photodetector had a low dark current, high photoresponsivity and fast response speed. By promoting a low-cost, simple fabrication method, this study expands the application of ternary alloy Al1-xInxN visible-light photodetectors in optical communication.
|
Received: 26 November 2022
Revised: 03 February 2023
Accepted manuscript online: 27 February 2023
|
PACS:
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
07.57.Kp
|
(Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974144, 62004127, and 12074263), Key-Area Research and Development Program of Guangdong Province (Grant Nos. 2020B010174003 and 2020B010169001), Guangdong Science Foundation for Distinguished Young Scholars (Grant No. 2022B1515020073), the Science and Technology Foundation of Shenzhen (Grant No. JSGG20191129114216474), and the Open Project of State Key Laboratory of Functional Materials for Informatics. |
Corresponding Authors:
Shuangwu Huang
E-mail: mark_huang@szu.edu.cn
|
Cite this article:
Xinke Liu(刘新科), Zhichen Lin(林之晨), Yuheng Lin(林钰恒), Jianjin Chen(陈建金), Ping Zou(邹苹), Jie Zhou(周杰), Bo Li(李博), Longhai Shen(沈龙海), Deliang Zhu(朱德亮), Qiang Liu(刘强), Wenjie Yu(俞文杰), Xiaohua Li(黎晓华), Hong Gu(顾泓), Xinzhong Wang(王新中), and Shuangwu Huang(黄双武) Facile integration of an Al-rich Al1-xInxN photodetector on free-standing GaN by radio-frequency magnetron sputtering 2023 Chin. Phys. B 32 117701
|
[1] Zawadzka A M, Karakas A, Plóciennik P and Szatkowski J, Lukasiak Z, Kapceoglu A, Ceylan Y and Sahraoui B 2015 Dyes and Pigments 112 116 [2] Yamaguchi S, Kariya M, Nitta S, Kato H, Takeuchi T, Wetzel C, Amano H and Akasaki I 1998 Journal of Crystal Growth 195 309 [3] Lobanova A V, Segal A S, Yakovlev E V and Talalaev R A 2012 Journal of Crystal Growth 352 199 [4] Wang F, Li S F, Sun Q and Jia Y 2010 Solid State Sciences 12 1641 [5] Blasco R, Naranjo F B and Valdueza-Felip S 2020 Current Applied Physics 20 1244 [6] Blasco R, Valdueza-Felip S, Montero D, Sun M, Olea J and Naranjo F B 2020 Physica Status Solidi (b) 257 1900575 [7] Chen J J, Shen L S, Qi D L, Wu L J, Li X, Song J Y and Zhang X L 2022 Ceramics International 48 2802 [8] Carlin J F and Ilegems M 2003 Appl. Phys. Lett. 83 668 [9] Borovac D, Sun W C, Song R, Wierer J J and Tansu N 2020 Journal of Crystal Growth 533 125469 [10] Tan C K, Sun W, Borovac D and Tansu N 2016 Sci. Rep. 6 22983 [11] Velpula R T, Jain B, Philip M R, Nguyen H D, Wang R and Nguyen H P T 2020 Sci. Rep. 10 2547 [12] Laskar M R, Ganguli T, Rahman A A, Arora A, Hatui N, Gokhale M R, Ghosh S and Bhattacharya A 2011 Appl. Phys. Lett. 98 181108 [13] Lupu A, Julien F H, Golka S, Pozzovivo G, Strasser G, Baumann E, Giorgetta F, Hofstetter D, Nicolay S, Mosca M, Feltin E, Carlin J F and Grandjean N 2008 IEEE Photonics Technology Letters 20 102 [14] Edmunds C, Tang L, Li D, Cervantes M, Gardner G, Paskova T, Manfra M J and Malis O 2012 Journal of Electronic Materials 41 881 [15] Jeganathan K, Shimizu M, Okumura H, Yano Y and Akutsu N 2007 Journal of Crystal Growth 304 342 [16] Liu H F, Tan C C, Dalapati G K and Chi D Z 2012 J. Appl. Phys. 112 063114 [17] Cascajero A N, Lerma L M, Felip S V, Navío C, Monroy E, Herráez G M and Naranjo F B 2016 Jpn. J. Appl. Phys. 55 065101 [18] Dong C J, Xu M, Chen Q Y, Liu F S, Zhou H P, Wei Y and Ji H X 2009 J. Alloys Compd. 479 812 [19] Cascajero A N, Felip S V, Lerma L M, Monroy E, Shaw E T, Martin R W, Herráez M G and Naranjo F B 2017 J. Phys. D:Appl. Phys. 50 065101 [20] Lebedev V, Morales F M, Cimalla V, Lozano J G, González D, Himmerlich M, Krischok S, Schaefer J A and Ambacher O 2006 Superlattices and Microstructures 40 289 [21] You Y, Ito A, Tu R and Goto T 2013 Surface and Coatings Technology 232 1 [22] Alizadeh M, Goh B T, Pandey A K, Dee C F and Rahman S A 2017 Materials Chemistry and Physics 199 408 [23] Alizadeh M, Ganesh V, Mehdipour H, Nazarudin N F F, Goh B T, Shuhaimi A and Rahman S A 2015 J. Alloys Compd. 632 741 [24] Alizadeh M, Mehdipour H, Ganesh V, Ameera A N, Goh B T, Shuhaimi A and Rahman S A 2014 Appl. Phys. A 117 2217 [25] Abed C, Fernandez S, Aouida S, Elhouichet H, Priego F, Castro Y, Mancebo M B G and Munuera C 2020 Materials (Basel) 13 9 [26] Huang Y, Chen D J, Lu H, Shi H B, Han P, Zhang R and Zheng Y D 2010 Appl. Phys. Lett. 96 243503 [27] Heikman S, Keller S, Wu Y, Speck J S, DenBaars S P and Mishra U K 2003 J. Appl. Phys. 93 10114 [28] Edmunds C, Tang L, Cervantes M, Shirazi-Hd M, Shao J, Grier A, Valavanis A, Cooper J D, Li D, Gardner G, Zakharov D N, Ikonić Z, Indjin D, Harrison P, Manfra M J and Malis O 2013 Phys. Rev. B 88 235306 [29] Li Z W, Wu J, Wang C, Zhang H, Yu W J, Lu Y M and Xinke Liu 2020 Nanophotonics 9 1981 [30] Cramer R C, Kyle E C H and Speck J S 2019 J. Appl. Phys. 126 035703 [31] Yeh T S, Wu J H and Lan W H 2008 Journal of Crystal Growth 310 5308 [32] Liu X K, He J Z, Liu Q, Tang D, Jia F, Wen J, Lu T MM, Yu W J, Zhu D L, Liu W J, Cao P J, Han S, Pan J S, He Z B and Ang K W 2015 Appl. Phys. Lett. 107 101601 [33] Li K L, Li Z W, Hong Y H, Hu C, Mao W and Liu X K 2018 Appl. Phys. Lett. 113 143506 [34] Liu X K, Hu C, Li K, Wang W, Li Z W, Ao J, Wu J, He W, Mao W, Liu Q, Yu W and Chung R J 2018 Nanoscale Res. Lett. 13 405 [35] Liu X K, Luo J L, Zhu D L, Lu Y M, Li X L, He J L, Chiu H C, Xu K, Yu W J and Chung R J 2021 ACS Applied Electronic Materials 3 1988 [36] Lähnemann J, Hertog M D, Hille P, Mata M D L, Fournier T, Schörmann J, Arbiol J, Eickhoff M and Monroy E 2016 Nano Lett. 16 3260 [37] Xiao Y F, Min L, Liu X K, Liu W J, Younis U, Peng T H, Kang X W, Wu X H, Shijin Ding and Zhang D W 2020 Nanophotonics 9 3035 [38] Hu S Q, Liao Z L, He J L, Yu W J, Song L J, Wang Q, Li X H and Liu X K 2021 J. Appl. Phys. 129 183106 [39] Weng W Y, Chang S J, Lai W C, Hsueh T J, Shei S C, Zeng X F, Wu S L and Hung S C 2009 IEEE Photonics Technology Letters 21 504 [40] Wu Y C, Liu C H, Chen S Y, Shih F Y, Ho P H, Chen C W, Liang C T and Wang W H 2015 Sci. Rep. 5 11472 [41] Blasco R, Cascajero A N, Rodríguez M J, Montero D, Grenet L, Olea J, Naranjo F B and Felip S V 2018 Physica Status Solidi (a) 216 1800494 [42] Kaushik S, Naik T R, Alka A, Garg M, Tak B R, Ravikanth M, Rao V R and Singh R 2020 ACS Applied Electronic Materials 2 739 [43] Afzal N, Devarajan M and Ibrahim K 2016 Materials Research Express 3 085904 [44] Jain S K, Krishna S, Aggarwal N, Kumar R, Gundimeda A, Husale S C, Gupta V and Gupta G 2018 Journal of Electronic Materials 47 6086 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|