Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104214    DOI: 10.1088/1674-1056/acf205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

State transfer and entanglement between two- and four-level atoms in a cavity

Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺)
School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  Qudits with a large Hilbert space to host quantum information are widely utilized in various applications, such as quantum simulation and quantum computation, but the manipulation and scalability of qudits still face challenges. Here, we propose a scheme to directly and locally transfer quantum information from multiple atomic qubits to a single qudit and vice versa in an optical cavity. With the qubit-qudit interaction induced by the cavity, our scheme can transfer quantum states efficiently and measurement-independently. In addition, this scheme can robustly generate a high-dimensional maximal entangled state with asymmetric particle numbers, showing its potential in realizing an entanglement channel. Such an information interface for qubits and qudit may have enlightening significance for future research on quantum systems in hybrid dimensions.
Keywords:  quantum state transfer      quantum entanglement      cavity quantum eletrodynamics  
Received:  07 July 2023      Revised:  04 August 2023      Accepted manuscript online:  21 August 2023
PACS:  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61974168), the National Key Research and Development Program of China (Grant No. 2017YFA0305200), and the Special Project for Research and Development in Key Areas of Guangdong Province of China (Grant No. 2018B030325001).
Corresponding Authors:  Xiaoqi Zhou     E-mail:  zhouxq8@mail.sysu.edu.cn

Cite this article: 

Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺) State transfer and entanglement between two- and four-level atoms in a cavity 2023 Chin. Phys. B 32 104214

[1] O'Leary D P, Brennen G K and Bullock S S 2006 Phys. Rev. A 74 032334
[2] Godfrin C, Ferhat A, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W and Balestro F 2014 Phys. Rev. Lett. 119 187702
[3] Klimov A B, Guzman R, Retamal J C and Saavedra C 2003 Phys. Rev. A 67 062313
[4] Sparrow C, Martin-Lopez E, Maraviglia N, Neville A, Harrold C, Carolan J, Joglekar Y N, Hashimoto T, Matsuda N and O'Brien J L 2018 Nature 557 660
[5] Chi Y, Huang J, Zhang Z, et al. 2022 Nat. Commun. 13 1162
[6] Niu M Y, Chuang I L, Shapiro J H, et al. 2018 Phys. Rev. Lett. 120 160502
[7] Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, Connell A D O, Sank D, Wang H, Wenner J, Cleland A N, Geller M R and Martinis J M 2009 Science 325 722
[8] Soltamov V, Kasper C, Poshakinskiy A, Anisimov A, Mokhov E, Sperlich A, Tarasenko S, Baranov P, Astakhov G and Dyakonov V 2019 Nat. Commun. 10 1678
[9] Moreno-Pineda E, Godfrin C, Balestro F, Wernsdorfer W and Ruben M 2018 Chem. Soc. Rev. 47 501
[10] Bullock S S, O'Leary D P and Brennen G K 2005 Phys. Rev. Lett. 94 230502
[11] Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, O'brien J L, Gilchrist A and White A G 2005 Nat. Phys. 5 134
[12] Ralph T C, Resch K J and Gilchrist A 2007 Phys. Rev. A 75 022313
[13] Rico E, Dalmonte M, Zoller P, Banerjee D, Bogli M, Stebler P and Wiese U J 2018 Ann. Phys. 393 466
[14] Gonzalez-Cuadra D, Zache T V, Carrasco J, Kraus B and Zoller P 2022 Phys. Rev. Lett. 129 160501
[15] MacDonell R J, Dickerson C E, Birch C J, Kumar A, Edmunds C L, Biercuk M J, Hempel C and Kassal I 2021 Chem. Sci. 12 9794
[16] Kraft T, Ritz C, Brunner N, Huber M and Guhne O 2018 Phys. Rev. Lett. 120 060502
[17] Kues M, Reimer C, Roztocki P, et al. 2017 Nature 546 622
[18] Cervera-Lierta A, Krenn M, Aspuru-Guzik A and Galda A 2022 Phys. Rev. Appl. 17 024062
[19] Collins D, Gisin N, Linden N, Massar S and Popescu S 2002 Phys. Rev. Lett. 88 040404
[20] Feng T, Xu Q, Zhou L, Luo M, Zhang W and Zhou X 2022 Photonics Res. 10 2854
[21] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[22] Kurpiers P, Magnard P, Walter T, et al. 2018 Nature 558 264
[23] Sillanpaa M A, Park J I and Simmonds R W 2007 Nature 449 438
[24] Liu T, Su Q P, Yang J H, Zhang Y, Xiong S J, Liu J M and Yang C P 2017 Sci. Rep. 7 7039
[25] Luis F, Repolles A, Martinez-Perez M J, Aguila D, Roubeau O, Zueco D, Alonso P J, Evangelisti M, Camon A, Sese J, Barrios L A and Aromi G 2011 Phys. Rev. Lett. 107 117203
[26] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[27] Wineland D J, Monroe C, Itano W M, King B E, Leibfried D, Myatt C and Wood C 1997 Phys. Scr. T76 147
[28] Kasper V, Hebenstreit F, Jendrzejewski F, Oberthaler M K and Berges J 2017 New J. Phys. 19 023030
[29] Domokos P, Raimond J M, Brune M and Haroche S 1995 Phys. Rev. A 52 3554
[30] Ladd T and Yamamoto Y 2011 Phys. Rev. B 84 235307
[31] Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311
[32] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[33] Goyal S K, Boukama-Dzoussi P E, Ghosh S, Roux F S and Konrad T 2014 Sci. Rep. 4 4543
[34] Zhang C, Chen J F, Cui C, Dowling J P, Ou Z Y and Byrnes T 2019 Phys. Rev. A 100 032330
[35] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[36] Guo G P, Li C F, Li J and Guo G C 2002 Phys. Rev. A 65 042102
[37] Guo G C and Zhang Y S 2002 Phys. Rev. A 65 054302
[38] Zhou L, Xu Q, Feng T and Zhou X 2022 arXiv: 221200545 [quant-ph]
[39] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[40] Jagsch S T, Greif L A T, Reitzenstein S and Schliwa A 2019 Phys. Rev. B 99 245303
[41] Bertet P, Osnaghi S, Milman P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2002 Phys. Rev. Lett. 88 143601
[42] Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K and Xiao M 2019 Phys. Rev. A 99 043833
[43] Sayrin C, Junge C, Mitsch R, Albrecht B, O'Shea D, Schneeweiss P, Volz J and Rauschenbeutel A 2015 Phys. Rev. X 5 041036
[44] Xu Q, Fattal D and R G 2008 Opt. Express 16 4309
[45] Morigi G, Franke-Arnold S and Oppo G L 2002 Phys. Rev. A 66 053409
[46] Ou B Q, Liang L M and Li C Z 2009 Opt. Commun. 282 2870
[47] Stowe M C, Peter A and Ye J 2008 Phys. Rev. Lett. 100 203001
[48] Lodahl P, Mahmoodian S and Stobbe S 2015 Rev. Mod. Phys. 87 347
[49] Poshakinskiy A V and Poddubny A N 2016 Phys. Rev. A 93 033856
[50] He X L, Yang C P, Li S, Luo J Y and Han S 2010 Phys. Rev. A 82 024301
[51] Waseem M, Irfan M and Qamar S 2012 Physica C 477 24
[52] Li H, Ge G, Liao L and Feng S 2015 Found. Phys. 45 198
[53] Mabuchi H and Doherty A C 2002 Science 298 1372
[54] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[55] Fortier K M, Kim S Y, Gibbons M J, Ahmadi P and Chapman M S 2007 Phys. Rev. Lett. 98 233601
[56] Imamog A, Awschalom D D, Burkard G, et al. 1999 Phys. Rev. Lett. 83 4204
[57] Malik M, Erhard M, Huber M, Krenn M, Fickler R and Zeilinger A 2016 Nat. Photonics 10 248
[58] Hu X M, Xing W B, Zhang C, Liu B H, Pivoluska M, Huber M, Huang Y F, Li C F and Guo G C 2020 NPJ Quantum Inf. 6 88
[59] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[60] Lin G W, Ye M Y, Chen L B, Du Q H and Lin X M 2007 Phys. Rev. A 76 014308
[61] Li Y H and Nie L P 2013 Int. J. Theor. Phys. 52 961
[62] Shi Z C, Xia Y, Song J and Song H S 2013 Quantum Inf. Process. 12 411
[63] Chen Z, Chen Y H, Xia Y, Song J and Huang B H 2016 Sci. Rep. 6 22202
[64] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E and Kimble H J 2005 Phys. Rev. A 71 013817
[65] Suchowski H, Silberberg Y and Uskov D B 2011 Phys. Rev. A 84 013414
[66] Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, Eichler C, Puebla-Hellmann G, Fedorov A and Wallraff A 2013 Nature 500 319
[67] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[68] Hattermann H, Bothner D, Ley L, Ferdinand B, Wiedmaier D, Sárkány L, Kleiner R, Koelle D and Fortágh J 2017 Nat. Commun. 8 2254
[69] Li Y C, Martinez-Cercos D, Martínez-Garaot S, Chen X and Muga J 2018 Phys. Rev. A 97 013830
[70] Wang F, Erhard M, Babazadeh A, Malik M, Krenn M and Zeilinger A 2017 Optica 4 1462
[71] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A and Pan J W 2019 Phys. Rev. Lett. 123 070505
[72] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516
[73] Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F, Li C F and Guo G C 2020 Phys. Rev. Lett. 125 230501
[74] Zheng S B 1998 Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 10 691
[75] Stannigel K, Rabl P and Zoller P 2012 New J. Phys. 14 063014
[76] Pichler H, Ramos T, Daley A J and Zoller P 2015 Phys. Rev. A 91 042116
[1] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[2] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Fast and perfect state transfer in superconducting circuit with tunable coupler
Chi Zhang(张驰), Tian-Le Wang(王天乐), Ze-An Zhao(赵泽安), Xiao-Yan Yang(杨小燕),Liang-Liang Guo(郭亮亮), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(11): 110305.
[5] Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam
Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳). Chin. Phys. B, 2023, 32(10): 100302.
[6] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[9] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[10] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[13] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[14] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[15] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
No Suggested Reading articles found!