ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
State transfer and entanglement between two- and four-level atoms in a cavity |
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺)† |
School of Physics, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract Qudits with a large Hilbert space to host quantum information are widely utilized in various applications, such as quantum simulation and quantum computation, but the manipulation and scalability of qudits still face challenges. Here, we propose a scheme to directly and locally transfer quantum information from multiple atomic qubits to a single qudit and vice versa in an optical cavity. With the qubit-qudit interaction induced by the cavity, our scheme can transfer quantum states efficiently and measurement-independently. In addition, this scheme can robustly generate a high-dimensional maximal entangled state with asymmetric particle numbers, showing its potential in realizing an entanglement channel. Such an information interface for qubits and qudit may have enlightening significance for future research on quantum systems in hybrid dimensions.
|
Received: 07 July 2023
Revised: 04 August 2023
Accepted manuscript online: 21 August 2023
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61974168), the National Key Research and Development Program of China (Grant No. 2017YFA0305200), and the Special Project for Research and Development in Key Areas of Guangdong Province of China (Grant No. 2018B030325001). |
Corresponding Authors:
Xiaoqi Zhou
E-mail: zhouxq8@mail.sysu.edu.cn
|
Cite this article:
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺) State transfer and entanglement between two- and four-level atoms in a cavity 2023 Chin. Phys. B 32 104214
|
[1] O'Leary D P, Brennen G K and Bullock S S 2006 Phys. Rev. A 74 032334 [2] Godfrin C, Ferhat A, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W and Balestro F 2014 Phys. Rev. Lett. 119 187702 [3] Klimov A B, Guzman R, Retamal J C and Saavedra C 2003 Phys. Rev. A 67 062313 [4] Sparrow C, Martin-Lopez E, Maraviglia N, Neville A, Harrold C, Carolan J, Joglekar Y N, Hashimoto T, Matsuda N and O'Brien J L 2018 Nature 557 660 [5] Chi Y, Huang J, Zhang Z, et al. 2022 Nat. Commun. 13 1162 [6] Niu M Y, Chuang I L, Shapiro J H, et al. 2018 Phys. Rev. Lett. 120 160502 [7] Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, Connell A D O, Sank D, Wang H, Wenner J, Cleland A N, Geller M R and Martinis J M 2009 Science 325 722 [8] Soltamov V, Kasper C, Poshakinskiy A, Anisimov A, Mokhov E, Sperlich A, Tarasenko S, Baranov P, Astakhov G and Dyakonov V 2019 Nat. Commun. 10 1678 [9] Moreno-Pineda E, Godfrin C, Balestro F, Wernsdorfer W and Ruben M 2018 Chem. Soc. Rev. 47 501 [10] Bullock S S, O'Leary D P and Brennen G K 2005 Phys. Rev. Lett. 94 230502 [11] Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, O'brien J L, Gilchrist A and White A G 2005 Nat. Phys. 5 134 [12] Ralph T C, Resch K J and Gilchrist A 2007 Phys. Rev. A 75 022313 [13] Rico E, Dalmonte M, Zoller P, Banerjee D, Bogli M, Stebler P and Wiese U J 2018 Ann. Phys. 393 466 [14] Gonzalez-Cuadra D, Zache T V, Carrasco J, Kraus B and Zoller P 2022 Phys. Rev. Lett. 129 160501 [15] MacDonell R J, Dickerson C E, Birch C J, Kumar A, Edmunds C L, Biercuk M J, Hempel C and Kassal I 2021 Chem. Sci. 12 9794 [16] Kraft T, Ritz C, Brunner N, Huber M and Guhne O 2018 Phys. Rev. Lett. 120 060502 [17] Kues M, Reimer C, Roztocki P, et al. 2017 Nature 546 622 [18] Cervera-Lierta A, Krenn M, Aspuru-Guzik A and Galda A 2022 Phys. Rev. Appl. 17 024062 [19] Collins D, Gisin N, Linden N, Massar S and Popescu S 2002 Phys. Rev. Lett. 88 040404 [20] Feng T, Xu Q, Zhou L, Luo M, Zhang W and Zhou X 2022 Photonics Res. 10 2854 [21] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221 [22] Kurpiers P, Magnard P, Walter T, et al. 2018 Nature 558 264 [23] Sillanpaa M A, Park J I and Simmonds R W 2007 Nature 449 438 [24] Liu T, Su Q P, Yang J H, Zhang Y, Xiong S J, Liu J M and Yang C P 2017 Sci. Rep. 7 7039 [25] Luis F, Repolles A, Martinez-Perez M J, Aguila D, Roubeau O, Zueco D, Alonso P J, Evangelisti M, Camon A, Sese J, Barrios L A and Aromi G 2011 Phys. Rev. Lett. 107 117203 [26] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320 [27] Wineland D J, Monroe C, Itano W M, King B E, Leibfried D, Myatt C and Wood C 1997 Phys. Scr. T76 147 [28] Kasper V, Hebenstreit F, Jendrzejewski F, Oberthaler M K and Berges J 2017 New J. Phys. 19 023030 [29] Domokos P, Raimond J M, Brune M and Haroche S 1995 Phys. Rev. A 52 3554 [30] Ladd T and Yamamoto Y 2011 Phys. Rev. B 84 235307 [31] Yang C P, Chu S I and Han S 2003 Phys. Rev. A 67 042311 [32] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [33] Goyal S K, Boukama-Dzoussi P E, Ghosh S, Roux F S and Konrad T 2014 Sci. Rep. 4 4543 [34] Zhang C, Chen J F, Cui C, Dowling J P, Ou Z Y and Byrnes T 2019 Phys. Rev. A 100 032330 [35] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392 [36] Guo G P, Li C F, Li J and Guo G C 2002 Phys. Rev. A 65 042102 [37] Guo G C and Zhang Y S 2002 Phys. Rev. A 65 054302 [38] Zhou L, Xu Q, Feng T and Zhou X 2022 arXiv: 221200545 [quant-ph] [39] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491 [40] Jagsch S T, Greif L A T, Reitzenstein S and Schliwa A 2019 Phys. Rev. B 99 245303 [41] Bertet P, Osnaghi S, Milman P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2002 Phys. Rev. Lett. 88 143601 [42] Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K and Xiao M 2019 Phys. Rev. A 99 043833 [43] Sayrin C, Junge C, Mitsch R, Albrecht B, O'Shea D, Schneeweiss P, Volz J and Rauschenbeutel A 2015 Phys. Rev. X 5 041036 [44] Xu Q, Fattal D and R G 2008 Opt. Express 16 4309 [45] Morigi G, Franke-Arnold S and Oppo G L 2002 Phys. Rev. A 66 053409 [46] Ou B Q, Liang L M and Li C Z 2009 Opt. Commun. 282 2870 [47] Stowe M C, Peter A and Ye J 2008 Phys. Rev. Lett. 100 203001 [48] Lodahl P, Mahmoodian S and Stobbe S 2015 Rev. Mod. Phys. 87 347 [49] Poshakinskiy A V and Poddubny A N 2016 Phys. Rev. A 93 033856 [50] He X L, Yang C P, Li S, Luo J Y and Han S 2010 Phys. Rev. A 82 024301 [51] Waseem M, Irfan M and Qamar S 2012 Physica C 477 24 [52] Li H, Ge G, Liao L and Feng S 2015 Found. Phys. 45 198 [53] Mabuchi H and Doherty A C 2002 Science 298 1372 [54] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902 [55] Fortier K M, Kim S Y, Gibbons M J, Ahmadi P and Chapman M S 2007 Phys. Rev. Lett. 98 233601 [56] Imamog A, Awschalom D D, Burkard G, et al. 1999 Phys. Rev. Lett. 83 4204 [57] Malik M, Erhard M, Huber M, Krenn M, Fickler R and Zeilinger A 2016 Nat. Photonics 10 248 [58] Hu X M, Xing W B, Zhang C, Liu B H, Pivoluska M, Huber M, Huang Y F, Li C F and Guo G C 2020 NPJ Quantum Inf. 6 88 [59] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565 [60] Lin G W, Ye M Y, Chen L B, Du Q H and Lin X M 2007 Phys. Rev. A 76 014308 [61] Li Y H and Nie L P 2013 Int. J. Theor. Phys. 52 961 [62] Shi Z C, Xia Y, Song J and Song H S 2013 Quantum Inf. Process. 12 411 [63] Chen Z, Chen Y H, Xia Y, Song J and Huang B H 2016 Sci. Rep. 6 22202 [64] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E and Kimble H J 2005 Phys. Rev. A 71 013817 [65] Suchowski H, Silberberg Y and Uskov D B 2011 Phys. Rev. A 84 013414 [66] Steffen L, Salathe Y, Oppliger M, Kurpiers P, Baur M, Lang C, Eichler C, Puebla-Hellmann G, Fedorov A and Wallraff A 2013 Nature 500 319 [67] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623 [68] Hattermann H, Bothner D, Ley L, Ferdinand B, Wiedmaier D, Sárkány L, Kleiner R, Koelle D and Fortágh J 2017 Nat. Commun. 8 2254 [69] Li Y C, Martinez-Cercos D, Martínez-Garaot S, Chen X and Muga J 2018 Phys. Rev. A 97 013830 [70] Wang F, Erhard M, Babazadeh A, Malik M, Krenn M and Zeilinger A 2017 Optica 4 1462 [71] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A and Pan J W 2019 Phys. Rev. Lett. 123 070505 [72] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516 [73] Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F, Li C F and Guo G C 2020 Phys. Rev. Lett. 125 230501 [74] Zheng S B 1998 Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 10 691 [75] Stannigel K, Rabl P and Zoller P 2012 New J. Phys. 14 063014 [76] Pichler H, Ramos T, Daley A J and Zoller P 2015 Phys. Rev. A 91 042116 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|