Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104215    DOI: 10.1088/1674-1056/acedf6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Novel transmission property of zero-index metamaterial waveguide doped with gain and lossy defects

Qionggan Zhu(朱琼干)1, Lichen Chai(柴立臣)1, and Hai Lu(路海)2,†
1 Department of Science, Taiyuan Institute of Technology, Taiyuan 030008, China;
2 Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing, School of Physics, Henan Normal University, Xinxiang 453007, China
Abstract  Taking inspiration from quantum parity-time (PT) symmetries that have gained immense popularity in the emerging fields of non- Hermitian optics and photonics, the interest of exploring more generalized gain-loss interactions is never seen down. In this paper we theoretically present new fantastic properties through a zero-index metamaterial (ZIM) waveguide loaded gain and loss defects. For the case of epsilon-and-mu-near-zero (EMNZ) based ZIM medium, electromagnetic (EM) waves are cumulative and the system behaves as an amplifier when the loss cavity coefficient is greater than the gain cavity coefficient. Conversely, when loss is less than gain, EM waves are dissipated and the system behaves as an attenuator. Moreover, our investigation is extended to non-Hermitian scenarios characterized by tailored distributions of gain and loss in the epsilon-near-zero (ENZ) host medium. The transport effect in ZIM waveguide is amplified in one mode, while it is dissipative in the other mode, which breaks the common sense and its physic is analyzed by magnetic flux. That is which cavity has the smaller loss/gain coefficient, the larger its magnetic flux, which cavity dominates. This paper is of significant importance in the manipulation of electromagnetic waves and light amplification as well as the enhancement of matter interactions.
Keywords:  zero-index metamaterial      non-Hermitian      gain-loss interaction      magnetic flux  
Received:  06 June 2023      Revised:  29 July 2023      Accepted manuscript online:  08 August 2023
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by Scientific and Technological Innovation Program of Higher Education Institutions in Shanxi Province, China (Grant No. 2021L554).
Corresponding Authors:  Hai Lu     E-mail:  luhai123@gmail.com

Cite this article: 

Qionggan Zhu(朱琼干), Lichen Chai(柴立臣), and Hai Lu(路海) Novel transmission property of zero-index metamaterial waveguide doped with gain and lossy defects 2023 Chin. Phys. B 32 104215

[1] Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752
[2] zdemir S K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783
[3] Xu J F, Yang X B, Chen H H, et al. 2020 Chin. Phys. B 29 064201
[4] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[5] Fleury R, Sounas D L and Alú A 2014 Phys. Rev. Lett. 113 023903
[6] Sounas D L, Fleury R and Alú A 2015 Phys. Rev. Appl. 4 014005
[7] Song Q J, Dai S W, Han D Z, Zhang Z Q, Chan C T and Zi J 2021 Chin. Phys. Lett. 38 084203
[8] Yi J, Z Pu Z and He S 2010 Phys. Rev. B 81 085117
[9] Fu Y Y, Xu Y D and Chen H Y 2014 Sci. Rep. 4 6428
[10] Huang X Q, Lai Y, Hang Z H, Zheng H H and Chan C T 2011 Nat. Mater. 10 583
[11] Luo J, et al. 2012 Appl. Phys. Lett. 100 221903
[12] Yang Y, Jia Z, Xu T, Luo J, Lai Y and Hang Z H 2019 Appl. Phys. Lett. 114 161905
[13] Liberal I and Engheta N 2017 Science 358 1540
[14] Liberal I and Engheta N 2017 Nat. Photon. 11 149
[15] Zhou Q J, Fu Y Y, Huang L J, Wu Q N, Miroshnichenko A, Gao L and Xu Y D 2021 Nat. Commun. 12 4390
[16] Niu X, Hu X, Chu S and Gong Q 2018 Adv. Opt. Mater. 6 1701292
[17] Liberal I, Li Y and Engheta N 2018 Nanophotonics 7 1117
[18] Liberal I, Mahmoud A M, Li Y, Edwards B and Engheta N 2017 Science 355 1058
[19] Coppolaro M, Moccia M, Castaldi G, Engheta N and Galdi V 2020 Proc. Acad. Natl. Sci. USA 117 13921
[20] Nguyen V C, Chen L and Halterman K 2010 Phys. Rev. Lett. 105 233908
[21] Xu Y D and Chen H Y 2011 Appl. Phys. Lett. 98 113501
[22] Fu Y Y, Zhang X J, Xu Y D and Chen H Y 2017 J. Appl. Phys. 121 094503
[23] Zhu Q G, Tan W and Wang Z G 2014 J. Phys.: Condens. Matter 26 255301
[24] Jin B and Argyropoulos C 2019 Adv. Opt. Mater. 7 1901083
[25] Luo J, Liu B, Hang Z H and Lai Y 2018 Laser & Photon. Rev. 12 1800001
[26] Fu Y Y, Xu Y D and Chen H Y 2016 Opt. Express 24 1648
[27] Wang C, Zhou Q J, Jiang J H, Gao L and Xu Y D 2023 Opt. Express 31 18487
[28] Rüter C E, Makris K G, El-Ganainy R, et al. 2010 Nat. Phys. 6 192
[29] El-Ganainy R, Makris K G, Khajavikhan M, et al. 2018 Nat. Phys. 14 11
[1] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[2] General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents
Sheng-Lian Jiang(蒋盛莲), Yanxia Liu(刘彦霞), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(9): 097204.
[3] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[4] Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
Chenxiao Dong(董陈潇), Zhesen Yang(杨哲森), Jinfeng Zeng(曾进峰), and Jiangping Hu(胡江平). Chin. Phys. B, 2023, 32(7): 070305.
[5] Symmetry-constrained quantum coupling in non-Fermi-liquid transport
Rong Li(李荣) and Zhen-Su She(佘振苏). Chin. Phys. B, 2023, 32(6): 067104.
[6] Quantum speed limit of a single atom in a squeezed optical cavity mode
Ya-Jie Ma(马雅洁), Xue-Chen Gao(高雪晨), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040308.
[7] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[8] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[9] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[10] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[11] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[12] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[13] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[14] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[15] Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-boundary correspondence
Xiaosen Yang(杨孝森), Yang Cao(曹阳), and Yunjia Zhai(翟云佳). Chin. Phys. B, 2022, 31(1): 010308.
No Suggested Reading articles found!