Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104213    DOI: 10.1088/1674-1056/acea66
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ground-state phase diagram, symmetries, excitation spectra and finite-frequency scaling of the two-mode quantum Rabi model

Yue Chen(陈越)1,2, Maoxin Liu(刘卯鑫)3, and Xiaosong Chen(陈晓松)3,†
1 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Systems Science, Beijing Normal University, Beijing 100875, China
Abstract  We investigate the two-mode quantum Rabi model (QRM) describing the interaction between a two-level atom and a two-mode cavity field. The quantum phase transitions are found when the ratio $ \eta $ of transition frequency of atom to frequency of cavity field approaches infinity. We apply the Schrieffer-Wolff (SW) transformation to derive the low-energy effective Hamiltonian of the two-mode QRM, thus yielding the critical point and rich phase diagram of quantum phase transitions. The phase diagram consists of four regions: a normal phase, an electric superradiant phase, a magnetic superradiant phase and an electromagnetic superradiant phase. The quantum phase transition between the normal phase and the electric (magnetic) superradiant phase is of second order and associates with the breaking of the discrete $ Z_2 $ symmetry. On the other hand, the phase transition between the electric superradiant phase and the magnetic superradiant phase is of first order and relates to the breaking of the continuous $U(1)$ symmetry. Several important physical quantities, for example the excitation energy and average photon number in the four phases, are derived. We find that the excitation spectra exhibit the Nambu-Goldstone mode. We calculate analytically the higher-order correction and finite-frequency exponents of relevant quantities. To confirm the validity of the low-energy effective Hamiltonians analytically derived by us, the finite-frequency scaling relation of the averaged photon numbers is calculated by numerically diagonalizing the two-mode quantum Rabi Hamiltonian.
Keywords:  two-mode quantum Rabi model      superradiant phase transition      Nambu-Goldstone mode      finite-frequency scaling      Schrieffer-Wolff (SW) transformation  
Received:  06 May 2023      Revised:  22 June 2023      Accepted manuscript online:  26 July 2023
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  05.30.Rt (Quantum phase transitions)  
  64.60.an (Finite-size systems)  
  12.38.Bx (Perturbative calculations)  
Fund: We thank Gaoke Hu for his helpful discussion on the finite-frequency scaling. This work was supported by the National Natural Science Foundation of China (Grant No. 12135003). The authors acknowledge HPC Cluster of ITP-CAS for supplying computation resources.
Corresponding Authors:  Xiaosong Chen     E-mail:  chenxs@bnu.edu.cn

Cite this article: 

Yue Chen(陈越), Maoxin Liu(刘卯鑫), and Xiaosong Chen(陈晓松) Ground-state phase diagram, symmetries, excitation spectra and finite-frequency scaling of the two-mode quantum Rabi model 2023 Chin. Phys. B 32 104213

[1] Fink J M, Dombi A, Vukics A, Wallraff A and Domokos P 2017 Phys. Rev. X 7 011012
[2] Sun Z H, Cai J Q, Tang Q C, Hu Y and Fan H 2020 Ann. Phys. 532 1900270
[3] Casteels W, Fazio R and Ciuti C 2017 Phys. Rev. A 95 012128
[4] Zhu H J, Xu K, Zhang G F and Liu W M 2020 Phys. Rev. Lett. 125 050402
[5] Garbe L, Bina M, Keller A, Paris M G A and Felicetti S 2020 Phys. Rev. Lett. 124 120504
[6] Puebla R, Smirne A, Huelga S F and Plenio M B 2020 Phys. Rev. Lett. 124 230602
[7] Chen X Y, Zhang Y Y, Fu L and Zheng H 2020 Phys. Rev. A 101 033827
[8] Zhang Y, Mao B B, Xu D, Zhang Y Y, You W L, Liu M and Luo H G 2020 J. Phys. A: Math. Theor. 53 315302
[9] Forn-Díaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 025005
[10] Zhu C J, Ping L L, Yang Y P and Agarwal G S 2020 Phys. Rev. Lett. 124 073602
[11] Wang Y Z, He S, Duan L and Chen Q H 2021 Phys. Rev. B 103 205106
[12] Leppäkangas J, Braumüller J, Hauck M, Reiner J M, Schwenk I, Zanker S, Fritz L, Ustinov A V, Weides M and Marthaler M 2018 Phys. Rev. A 97 052321
[13] Abdi M 2019 Phys. Rev. B 100 184310
[14] Garbe L, Egusquiza I L, Solano E, Ciuti C, Coudreau T, Milman P and Felicetti S 2017 Phys. Rev. A 95 053854
[15] Hwang M J, Puebla R and Plenio M B 2015 Phys. Rev. Lett. 115 180404
[16] Xie Q, Zhong H, Batchelor M T and Lee C 2017 J. Phys. A: Math. Theor. 50 113001
[17] Rabi I I 1936 Phys. Rev. 49 324
[18] Rabi I I 1937 Phys. Rev. 51 652
[19] Jaynes E and Cummings F 1963 Proc. IEEE 51 89
[20] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[21] Holstein T 1959 Ann. Phys. 8 325
[22] Crespi A, Longhi S and Osellame R 2012 Phys. Rev. Lett. 108 163601
[23] Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C and Duan L M 2021 Nat. Commun. 12 1126
[24] Chen X, Wu Z, Jiang M, Lü X Y, Peng X and Du J 2021 Nat. Commun. 12 6281
[25] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[26] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[27] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
[28] Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[29] Chen Z, Wang Y, Li T, Tian L, Qiu Y, Inomata K, Yoshihara F, Han S, Nori F, Tsai J S and You J Q 2017 Phys. Rev. A 96 012325
[30] Forn-Díaz P, García-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M and Lupascu A 2017 Nat. Phys. 13 39
[31] Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S and Semba K 2017 Nat. Phys. 13 44
[32] Irish E K 2007 Phys. Rev. Lett. 99 173601
[33] Irish E K 2007 Phys. Rev. Lett. 99 259901
[34] Zhong H, Xie Q, Batchelor M T and Lee C 2013 J. Phys. A: Math. Theor. 46 415302
[35] Xie Q T, Cui S, Cao J P, Amico L and Fan H 2014 Phys. Rev. X 4 021046
[36] Ying Z J, Liu M, Luo H G, Lin H Q and You J Q 2015 Phys. Rev. A 92 053823
[37] Casanova J, Romero G, Lizuain I, García-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
[38] Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473
[39] Braak D 2011 Phys. Rev. Lett. 107 100401
[40] Larson J 2012 Phys. Rev. Lett. 108 033601
[41] Yu L, Zhu S, Liang Q, Chen G and Jia S 2012 Phys. Rev. A 86 015803
[42] Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
[43] Ashhab S 2013 Phys. Rev. A 87 013826
[44] De Liberato S 2014 Phys. Rev. Lett. 112 016401
[45] Liu M, Ying Z J, An J H and Luo H G 2015 New J. Phys. 17 043001
[46] Cong L, Sun X M, Liu M, Ying Z J and Luo H G 2017 Phys. Rev. A 95 063803
[47] Wang Y, You W L, Liu M, Dong Y L, Luo H G, Romero G and You J Q 2018 New J. Phys. 20 053061
[48] Mao B B, Li L, Wang Y, You W L, Wu W, Liu M and Luo H G 2019 Phys. Rev. A 99 033834
[49] Mahmoodian S 2019 Phys. Rev. Lett. 123 133603
[50] Kockum A F, Miranowicz A, De Liberato S, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 295
[51] Forn-Díaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 025005
[52] Xie W, Mao B B, Li G, Wang W, Sun C, Wang Y, You W L and Liu M 2020 J. Phys. A: Math. Theor. 53 095302
[53] Le Boité A 2020 Adv. Quantum Technol. 3 1900140
[54] Frisk K A, Miranowicz A, De Liberato S, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19
[55] Liu M, Chesi S, Ying Z J, Chen X, Luo H G and Lin H Q 2017 Phys. Rev. Lett. 119 220601
[56] Boller K J, Imamoǧlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[57] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
[58] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[59] Bruß D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[60] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[61] Zhou Z, Chu S I and Han S 2002 Phys. Rev. B 66 054527
[62] Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M and Singh K 2012 New J. Phys. 14 103035
[63] Hayn M, Emary C and Brandes T 2011 Phys. Rev. A 84 053856
[64] Cordero S, Nahmad-Achar E, López-Peña R and Castaños O 2015 Phys. Rev. A 92 053843
[65] Baksic A and Ciuti C 2014 Phys. Rev. Lett. 112 173601
[66] Fan J, Yang Z, Zhang Y, Ma J, Chen G and Jia S 2014 Phys. Rev. A 89 023812
[67] Léonard J, Morales A, Zupancic P, Esslinger T and Donner T 2017 Nature 543 87
[68] Nambu Y and Jona-Lasinio G 1961 Phys. Rev. 122 345
[69] Goldstone J 1961 Il Nuovo Cimento 19 154
[70] Goldstone J, Salam A and Weinberg S 1962 Phys. Rev. 127 965
[71] Popov V N and Fedotov S A 1982 Theor. Math. Phys. 51 363
[72] Ye J and Zhang C 2011 Phys. Rev. A 84 023840
[73] Yu Y X, Ye J and Liu W M 2013 Sci. Rep. 3 3476
[74] Vidal J and Dusuel S 2006 Europhys. Lett. 74 817
[75] Dusuel S and Vidal J 2004 Phys. Rev. Lett. 93 237204
[76] Dusuel S and Vidal J 2005 Phys. Rev. B 71 224420
[1] Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field
Yangpeng Wang(王杨鹏), Rujian Zhang(章如健), Yan Yang(杨燕), Qin Wu(吴琴), Zhifei Yu(于志飞), and Bing Chen(陈冰). Chin. Phys. B, 2023, 32(7): 070301.
[2] Tunable magnomechanically induced transparency and fast-slow light in a hybrid cavity magnomechanical system
Qinghong Liao(廖庆洪), Kun Peng(彭坤), and Haiyan Qiu(邱海燕). Chin. Phys. B, 2023, 32(5): 054205.
[3] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[4] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[5] Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
Jian Zeng(曾健) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(4): 043202.
[6] Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 014208.
[7] Ideal optomechanically induced transparency generation in a cavity optoelectromechanical system
Jing Wang(王婧) and Xue-Dong Tian(田雪冬). Chin. Phys. B, 2021, 30(10): 104211.
[8] Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity
Yu-Xin Shu(树宇鑫), Xiao-San Ma(马小三), Xian-Shan Huang(黄仙山), Mu-Tian Cheng(程木田), and Jun-Bo Han(韩俊波). Chin. Phys. B, 2021, 30(10): 104204.
[9] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[10] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[11] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[12] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[13] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[14] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[15] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
No Suggested Reading articles found!