Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040306    DOI: 10.1088/1674-1056/aca394
GENERAL Prev   Next  

Generation of microwave photon perfect W states of three coupled superconducting resonators

Xin-Ke Li(李新克)1,†, Yuan Zhou(周原)1, Guang-Hui Wang(王光辉)2, Dong-Yan Lv(吕东燕)1, Fazal Badshah3, and Hai-Ming Huang(黄海铭)1
1 School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan 442002, China;
2 School of Automobile Engineering, Hubei University of Automotive Technology, Shiyan 442002, China;
3 School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
Abstract  We propose an efficient method for the generation of perfect W states on three microwave superconducting resonators, of which the two nearest neighbors are coupled by a symmetric direct current superconducting quantum interference device (dc-SQUID). With suitable external magnetic fluxes applied to the dc-SQUID symmetry loops, on-chip tunable interactions between neighboring resonators can be realized, and different perfect W states can be deterministically created on-demand in one step. Numerical simulations show that high-fidelity target states can be generated and our scheme is robust against imperfect parameter tuning and environment-induced decoherence. The present work may have potential applications for implementing quantum computation and quantum information processing based on microwave photons.
Keywords:  quantum entanglement      perfect W state      circuit QED  
Received:  15 June 2022      Revised:  20 October 2022      Accepted manuscript online:  17 November 2022
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174300), the Natural Science Foundation of Hubei Province of China (Grant No. 2020CFB748), the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2021MA042 and ZR2021MA078), the Program for Science and Technology Innovation Team in Colleges of Hubei Province of China (Grant No. T2021012), and the Doctoral Scientific Research Foundation of Hubei University of Automotive Technology (Grant Nos. BK202113, BK201906, and BK202008).
Corresponding Authors:  Xin-Ke Li     E-mail:  20210064@huat.edu.cn

Cite this article: 

Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭) Generation of microwave photon perfect W states of three coupled superconducting resonators 2023 Chin. Phys. B 32 040306

[1] You J Q and Nori F 2011 Nature 474 589
[2] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[3] Clarke J and Wilhelm F K 2008 Nature 453 1031
[4] Steffen M, Ansmann M, McDermott R, Katz N, Bialczak R C, Lucero E, Neeley M, Weig E M, Cleland A N and Martinis J M 2006 Phys. Rev. Lett. 97 050502
[5] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[6] Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401
[7] He K Y, Geng X, Huang R T, Liu J S and Chen W 2021 Chin. Phys. B 30 080304
[8] Paauw F G, Fedorov A, Harmans C J P M and Mooij J E 2009 Phys. Rev. Lett. 102 090501
[9] Zhu X B, Kemp A, Saito S and Semba K 2010 Appl. Phys. Lett. 97 102503
[10] Schwarz M J, Goetz J, Jiang Z, Niemczyk T, Deppe F, Marx A and Gross R 2013 New J. Phys. 15 045001
[11] Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O’Malley P, Roushan P, Wenner J, White T C, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
[12] Chang J B, Vissers M R, Córcoles A D, Sandberg M, Gao J S, Abraham D W, Chow J M, Gambetta J M, Rothwell M B, Keefe G A, Steffen M and Pappas D P 2013 Appl. Phys. Lett. 103 012602
[13] Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears A P, Hover D, Gudmundsen T J, Rosenberg D, Samach G, Weber S, Yoder J L, Orlando T P, Clarke J, Kerman A J and Oliver W D 2016 Nat. Commun. 7 12964
[14] Yang X P, Han Z K, Song S Q, Zheng W, Lan D, Tan X S and Yu Y 2021 Chin. Phys. B 30 078403
[15] Fedorov A, Feofanov A K, Macha P, Forn-Díaz P, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 060503
[16] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
[17] Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[18] Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooij J E 2004 Nature 431 159
[19] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[20] Yang C P, Chu S I and Han S Y 2004 Phys. Rev. Lett. 92 117902
[21] Walter T, Kurpiers P, Gasparinetti S, Magnard P, Potocnik A, Salathe Y, Pechal M, Mondal M, Oppliger M, Eichler C and Wallraff A 2017 Phys. Rev. Appl. 7 054020
[22] Zheng W, Zhang Y, Dong Y, Xu J, Wang Z, Wang X, Li Y, Lan D, Zhao J, Li S, Tan X and Yu Y 2022 NPJ Quantum Inform. 8 9
[23] Steffen M, Ansmann M, Bialczak R C, Katz N, Lucero E, McDermott R, Neeley M, Weig E M, Cleland A N and Martinis J M 2007 Science 313 1423
[24] van der Ploeg S H W, Izmalkov A, van den Brink A M, Hubner U, Grajcar M, Il’ichev E, Meyer H G and Zagoskin A M 2004 Phys. Rev. Lett. 98 057004
[25] Riste D, Dukalski M, Watson C A, de Lange G, Tiggelman M J, Blanter Y M, Lehnert K W, Schouten R N and DiCarlo L 2013 Nature 502 350
[26] DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H and Schoelkopf R J 2010 Nature 467 574
[27] Neeley M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, O’Connell A D, Sank D, Wang H, Weides M, Wenner J, Yin Y, Yamamoto T, Cleland A N and Martinis J M 2010 Nature 467 570
[28] Zhong Y P, Xu D, Wang P, Song C, Guo Q J, Liu W X, Xu K, Xia B X, Lu C Y, Han S Y, Pan J W and Wang H 2016 Phys. Rev. Lett. 117 110501
[29] Song C, Xu K, Liu W X, Yang C P, Zheng S B, Deng H, Xie Q W, Huang K Q, Guo Q J, Zhang L B, Zhang P F, Xu D, Zheng D N, Zhu X B, Wang H, Chen Y A, Lu C Y, Han S Y and Pan J W 2017 Phys. Rev. Lett. 119 180511
[30] Gong M, Chen M C, Zheng Y R, et al. 2019 Phys. Rev. Lett. 122 110501
[31] Yamamoto T, Pashkin Y A, Astafiev O, Nakamura Y and Tsai J S 2003 Nature 425 941
[32] Fedorov A, Steffen L, Baur M, da Silva M P and Wallraff A 2011 Nature 481 170
[33] Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500
[34] Paik H, Mezzacapo A, Sandberg M, McClure D T, Abdo B, Corcoles A D, Dial O, Bogorin D F, Plourde B L T, Steffen M, Cross A W, Gambetta J M and Chow J M 2016 Phys. Rev. Lett. 117 250502
[35] DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M and Schoelkopf R J 2009 Nature 460 240
[36] Mariantoni M, Wang H, Yamamoto T, Neeley M, Bialczak R C, Chen Y, Lenander M, Lucero E, O’Connell A D, Sank D, Weides M, Wenner J, Yin Y, Zhao J, Korotkov A N, Cleland A N and Martinis J M 2011 Science 334 61
[37] Song C, Xu K, Li H K, Zhang Y R, Zhang X, Liu W X, Guo Q J, Wang Z, Ren W H, Hao J, Feng H, Fan H, Zheng D N, Wang D W, Wang H and Zhu S Y 2019 Science 365 574
[38] Wei K X, Lauer I, Srinivasan S, Sundaresan N, McClure D T, Toyli D, McKay D C, Gambetta J M and Sheldon S 2020 Phys. Rev. A 101 032343
[39] Schoelkopf R J and Girvin S M 2008 Nature 451 664
[40] Wang H, Hofheinz M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O’Connell A D, Sank D, Weides M, Wenner J, Cleland A N and Martinis J M 2009 Phys. Rev. Lett. 103 200404
[41] Vlastakis B, Kirchmair G, Leghtas Z, Nigg S E, Frunzio L, Girvin S M, Mirrahimi M, Devoret M H and Schoelkopf R J 2013 Science 342 607
[42] Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O’Connell A D, Wang H, Martinis J M and Cleland A N 2008 Nature 454 310
[43] Dong X P, Lu X J, Li M, Zhao Z Y and Feng Z B 2021 Chin. Phys. B 30 044214
[44] Hofheinz M, Wang H, Ansmann M, Bialczak R C, Lucero E, Neeley M, O’Connell A D, Sank D, Wenner J, Martinis J M and Cleland A N 2009 Nature 459 546
[45] Mariantoni M, Deppe F, Marx A, Gross R, Wilhelm F K and Solano E 2008 Phys. Rev. B 78 104508
[46] Yang C P, Su Q P and Han S Y 2012 Phys. Rev. A 86 022329
[47] Merkel S T and Wilhelm F K 2010 New J. Phys. 12 093036
[48] Su Q P, Yang C P and Zheng S B 2014 Sci. Rep. 4 3898
[49] Xiong S J, Sun Z, Liu J M, Liu T and Yang C P 2015 Opt. Lett. 40 2221
[50] Yang C P, Su Q P, Zheng S B and Han S 2013 Phys. Rev. A 87 022320
[51] Strauch F W, Jacobs K and Simmonds R W 2010 Phys. Rev. Lett. 105 050501
[52] Sharma R and Strauch F W 2016 Phys. Rev. A 93 012342
[53] Axline C J, Burkhart L D, Pfaff W, Zhang M Z, Chou K, CampagneIbarcq P, Reinhold P, Frunzio L, Girvin S M, Jiang L, Devoret M H and Schoelkopf R J 2018 Nat. Phys. 14 705
[54] Rosenblum S, Gao Y Y, Reinhold P, Wang C, Axline C J, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H and Schoelkopf R J 2018 Nat. Commun. 9 652
[55] Wang H, Mariantoni M, Bialczak R C, Lenander M, Lucero E, Neeley M, O’Connell A D, Sank D, Weides M, Wenner J, Yamamoto T, Yin Y, Zhao J, Martinis J M and Cleland A N 2011 Phys. Rev. Lett. 106 060401
[56] Wang C, Gao Y Y, Reinhold P, Heeres R W, Ofek N, Chou K, Axline C, Reagor M, Blumoff J, Sliwa K M, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H and Schoelkopf R J 2016 Science 352 1087
[57] Mariantoni M, Wang H, Bialczak R C, Lenander M, Lucero E, Neeley M, O’Connell A D, Sank D, Weides M, Wenner J, Yamamoto T, Yin Y, Zhao J, Martinis J M and Cleland A N 2011 Nat. Phys. 7 287
[58] Häffner H, Hänsel W, Roos C F, Benhelm J, Chek-al-kar D, Chwalla M, Korber T, Rapol U D, Riebe M, Schmidt P O, Becher C, Guhne O, Dur W and Blatt R 2005 Nature 438 643
[59] Murao M, Jonathan D, Plenio M B and Vedral V 1999 Phys. Rev. A 59 156
[60] Shi B S and Tomita A 2002 Phys. Lett. A 296 161
[61] Joo J, Park Y J, Oh S and Kim J 2003 New J. Phys. 5 136
[62] Agrawal P and Pati A 2006 Phys. Rev. A 74 062320
[63] Dong L, Wang J X, Li Q Y, Shen H Z, Dong H K, Xiu X M, Gao Y J and Oh C H 2016 Phys. Rev. A 93 012308
[64] Zheng S B 2006 Phys. Rev. A 74 054303
[65] Nie Y Y, Li Y H, Liu J C and Sang M H 2011 Opt. Commun. 284 1457
[66] Dong L, Xiu X M, Gao Y J and Chi F 2008 Commun. Theor. Phys. 49 1495
[67] Xin B, Xu P and Zheng Y Z 2011 Int. J. Quantum Inform. 9 947
[68] Bhaktavatsala Rao D D, Ghosh S and Panigrahi P K 2008 Phys. Rev. Lett. 78 042328
[69] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[70] You J Q and Nori F 2005 Phys. Today 58 42
[71] Li X K, Ma S L, Zhou Y, Xie J K and Li F L 2018 Quantum Inform. Process. 17 336
[72] Makhlin Y, Scohn G and Shnirman A 1999 Nature 398 305
[73] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[74] Agustí A, Solano E and Sabín C 2019 Phys. Rev. A 99 052328
[75] Johansson J R, Johansson G, Wilson C M and Nori F 2009 Phys. Rev. Lett. 103 147003
[76] Wilson C M, Duty T, Sandberg M, Persson F, Shumeiko V and Delsing P 2010 Phys. Rev. Lett. 105 233907
[77] Johansson J, Nation P and Nori F 2013 Comput. Phys. Commun. 184 1234
[78] Megrant A, Neill C, Barends R, Chiaro B, Chen Y, Feigl L, Kelly J, Lucero E, Mariantoni M, O’Malley P J J, Sank D, Vainsencher A, Wenner J, White T C, Yin Y, Zhao J, Palmstrøm C J, Martinis J M and Cleland A N 2012 Appl. Phys. Lett. 100 113510
[79] Reagor M, Pfaff W, Axline C, Heeres R W, Ofek N, Sliwa K, Holland E, Wang C, Blumoff J, Chou K, Hatridge M J, Frunzio L, Devoret M H, Jiang L and Schoelkopf R J 2016 Phys. Rev. B 94 014506
[80] Romanenko A, Pilipenko R, Zorzetti S, Frolov D, Awida M, Belomestnykh S, Posen S and Grassellino A 2020 Phys. Rev. Appl. 13 034032
[81] Blais A, Girvin S M and Oliver W D 2020 Nat. Phys. 16 247
[82] Wulschner F, Goetz J, Koessel F R, et al. 2016 EPJ Quantum Technol. 3 10
[1] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[8] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[9] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[10] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[11] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[12] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[13] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[14] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[15] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
No Suggested Reading articles found!