Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Band engineering of valleytronics WSe2–MoS2 heterostructures via stacking form, magnetic moment and thickness |
Yanwei Wu(吴彦玮)1,†, Zongyuan Zhang(张宗源)1,‡, Liang Ma(马亮)2, Tao Liu(刘涛)1, Ning Hao(郝宁)3, Wengang Lü(吕文刚)4, Mingsheng Long(龙明生)1, and Lei Shan(单磊)1,§ |
1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 2 State Key Laboratory of Metastable Materials Science&Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; 3 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 4 Beijing National center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Spin-valley polarization and bandgap regulation are critical in the developing of quantum devices. Here, by employing the density functional theory, we investigate the effects of stacking form, thickness and magnetic moment in the electronic structures of WSe$_{2}$-MoS$_{2}$ heterostructures. Calculations show that spin-valley polarization maintains in all situations. Increasing thickness of 2H-MoS$_{2}$ not only tunes the bandgap but also changes the degeneracy of the conduction band minimums (CBM) at $K/K_1$ points. Gradual increase of micro magnetic moment tunes the bandgap and raises the valence band maximums (VBM) at $\varGamma$ point. In addition, the regulation of band gap by the thickness of 2H-MoS$_{2}$ and introduced magnetic moment depends on the stacking type. Results suggest that WSe$_{2}$-MoS$_{2}$ heterostructure supports an ideal platform for valleytronics applications. Our methods also give new ways of optical absorption regulation in spin-valley devices.
|
Received: 31 October 2022
Revised: 20 January 2023
Accepted manuscript online: 31 January 2023
|
PACS:
|
21.60.Jz
|
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
|
|
31.15.ej
|
(Spin-density functionals)
|
|
75.75.Lf
|
(Electronic structure of magnetic nanoparticles)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975224 and 12104004), the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2020-050), the Fund of Anhui Provincial Natural Science Foundation (Grant No. 2008085MF206), New magnetoelectric materials and devices, the Recruitment Program for Leading Talent Team of Anhui Province 2020, State Key Laboratory of Luminescence and Applications (Grant No. SKLA-2021-03), and the Open Fund of Infrared and Low-Temperature Plasma Key Laboratory of Anhui Province (Grant No. IRKL2022KF03). |
Corresponding Authors:
Yanwei Wu, Zongyuan Zhang, Lei Shan
E-mail: wywss433@126.com;zongyuanzhang@ahu.edu.cn;lshan@ahu.edu.cn
|
Cite this article:
Yanwei Wu(吴彦玮), Zongyuan Zhang(张宗源), Liang Ma(马亮), Tao Liu(刘涛), Ning Hao(郝宁), Wengang Lü(吕文刚), Mingsheng Long(龙明生), and Lei Shan(单磊) Band engineering of valleytronics WSe2–MoS2 heterostructures via stacking form, magnetic moment and thickness 2023 Chin. Phys. B 32 107506
|
[1] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cave R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [2] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270 [3] Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Gou J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676 [4] Pospischil A, Furchi A and Mueller T 2014 Nat. Nanotechnol. 9 247 [5] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C and Novoselov K S 2013 Science 340 1311 [6] Jo S H, Ubrig N, Berger H, Kuzmenko A B and Morpurgo A F 2014 Nano Lett. 14 2019 [7] Baugher B W H, Churchill H O H, Yang Y F and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262 [8] Mak K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [9] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 [10] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406 [11] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [12] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [13] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L and Feng J 2012 Nat. Commun. 3 887 [14] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802 [15] Shkolnikov Y P, Poortere E P D, Tutuc E and Shayegan M 2020 Phys. Rev. Lett. 89 226805 [16] Zhu Z W, Collaudin A, Fauqué B, Kang W and Behnia K 2012 Nat. Phys. 8 89 [17] Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, Poortere E P D and Shayegan M 2006 Phys. Rev. Lett. 97 186404 [18] Sanchez O L, Ovchinnikov D, Misra S, Allain A and Kis A 2016 Nano Lett. 16 5792 [19] Scharf B, Xu G F, Matos-Abiague and Žutić I 2017 Phys. Rev. Lett. 119 127403 [20] Seyler K, Zhong D, Huang B, X L P, Wilson N, Taniguchi T, Watanabe K, Yao W, Xiao D, Mcguire M, Fu K and Xu X D 2018 Nano Lett. 18 3823 [21] Zhao C, Norden T, Zhang P Y, et al. 2017 Nat. Nanotechnol. 12 757 [22] Dong J and Ouyang G 2020 Chin. Phys. B 29 086403 [23] Xu L, Lu W, Hu C, et al. 2020 Chin. Phys. B 29 077304 [24] Yang H P, Yuan W J, Luo J, et al. 2019 Chin. Phys. B 28 078106 [25] Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F and Wang F 2014 Nat. Nanotechnol. 9 682 [26] Peng B, Yu G N, Liu X F, Liu B, Liang X, Bi L, Deng L J, Sum T C and Loh K P 2016 2D Materials 3 025020 [27] Ceballos F, Bellus M Z, Chiu H Y and Zhao H 2014 Acs Nano. 8 12717 [28] Ceballos F, Ju M G, Lane S D, Zeng X C and Zhao H 2017 Nano Lett. 17 1623 [29] He J Q, Kumar N, Bellus M Z, Chiu H Y, He D W, Wang Y S and Zhao H 2014 Nat. Commun. 5 5622 [30] Mishra r, Zhou W, Pennycook S J, Pantelides S T and Idrobo J C 2013 Phys. Rev. B 88 144409 [31] Ramasubramaniam A and Naveh D 2013 Phys. Rev. B 87 195201 [32] Cheng Y C, Zhu Z Y, Mi W B, Guo Z B and Schwingenschlögl U 2013 Phys. Rev. B 87 100401 [33] Cheng Y C, Zhang Q Y and Schwingenschlögl U 2014 Phys. Rev. B 89 155429 [34] Lu N, Guo H Y, Li L, Dai J, Wang L, Mei W N, Wu X J and Zeng X C 2014 Nanoscale 6 2879 [35] Cheng C and Yan H Z 2009 Physica E 41 828 [36] Li Y, Zhu H B, Wang G Q, Peng Y Z, Xu J R, Qian Z H, Bai R, Zhou G H, Yesilyurt C, Siu Z B and Jalil M B A 2018 Phys. Rev. B 97 085427 [37] Li Y, Jiang W Q, Ding G Y, Peng Y Z, Wen Z C, Wang G Q, Bai R, Qian Z H, Xiao X B and Zhou G H 2019 J. Appl. Phys. 125 244304 [38] MacNeill D, Heikes C, Mak K F, et al. 2015 Phys. Rev. Lett. 114 037401 [39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [40] Blochl P E 1994 Phys. Rev. B 50 17953 [41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [42] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 77 3865 [43] Grimme S 2006 J. Comput. Chem. 27 1787 [44] Chang C H, Fan X F, Lin S H and Kuo J L 2013 Phys. Rev. B 88 195420 [45] Ramasubramaniam A 2012 Phys. Rev. B 86 115409 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|