Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107506    DOI: 10.1088/1674-1056/acb761
Special Issue: SPECIAL TOPIC — Valleytronics
SPECIAL TOPIC—Valleytronics Prev   Next  

Band engineering of valleytronics WSe2–MoS2 heterostructures via stacking form, magnetic moment and thickness

Yanwei Wu(吴彦玮)1,†, Zongyuan Zhang(张宗源)1,‡, Liang Ma(马亮)2, Tao Liu(刘涛)1, Ning Hao(郝宁)3, Wengang Lü(吕文刚)4, Mingsheng Long(龙明生)1, and Lei Shan(单磊)1,§
1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 State Key Laboratory of Metastable Materials Science&Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;
3 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
4 Beijing National center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Spin-valley polarization and bandgap regulation are critical in the developing of quantum devices. Here, by employing the density functional theory, we investigate the effects of stacking form, thickness and magnetic moment in the electronic structures of WSe$_{2}$-MoS$_{2}$ heterostructures. Calculations show that spin-valley polarization maintains in all situations. Increasing thickness of 2H-MoS$_{2}$ not only tunes the bandgap but also changes the degeneracy of the conduction band minimums (CBM) at $K/K_1$ points. Gradual increase of micro magnetic moment tunes the bandgap and raises the valence band maximums (VBM) at $\varGamma$ point. In addition, the regulation of band gap by the thickness of 2H-MoS$_{2}$ and introduced magnetic moment depends on the stacking type. Results suggest that WSe$_{2}$-MoS$_{2}$ heterostructure supports an ideal platform for valleytronics applications. Our methods also give new ways of optical absorption regulation in spin-valley devices.
Keywords:  valleytronics      thickness      stacking      magnetic moment  
Received:  31 October 2022      Revised:  20 January 2023      Accepted manuscript online:  31 January 2023
PACS:  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  31.15.ej (Spin-density functionals)  
  75.75.Lf (Electronic structure of magnetic nanoparticles)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975224 and 12104004), the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2020-050), the Fund of Anhui Provincial Natural Science Foundation (Grant No. 2008085MF206), New magnetoelectric materials and devices, the Recruitment Program for Leading Talent Team of Anhui Province 2020, State Key Laboratory of Luminescence and Applications (Grant No. SKLA-2021-03), and the Open Fund of Infrared and Low-Temperature Plasma Key Laboratory of Anhui Province (Grant No. IRKL2022KF03).
Corresponding Authors:  Yanwei Wu, Zongyuan Zhang, Lei Shan     E-mail:  wywss433@126.com;zongyuanzhang@ahu.edu.cn;lshan@ahu.edu.cn

Cite this article: 

Yanwei Wu(吴彦玮), Zongyuan Zhang(张宗源), Liang Ma(马亮), Tao Liu(刘涛), Ning Hao(郝宁), Wengang Lü(吕文刚), Mingsheng Long(龙明生), and Lei Shan(单磊) Band engineering of valleytronics WSe2–MoS2 heterostructures via stacking form, magnetic moment and thickness 2023 Chin. Phys. B 32 107506

[1] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cave R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[2] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
[3] Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Gou J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
[4] Pospischil A, Furchi A and Mueller T 2014 Nat. Nanotechnol. 9 247
[5] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C and Novoselov K S 2013 Science 340 1311
[6] Jo S H, Ubrig N, Berger H, Kuzmenko A B and Morpurgo A F 2014 Nano Lett. 14 2019
[7] Baugher B W H, Churchill H O H, Yang Y F and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262
[8] Mak K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[9] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[10] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406
[11] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[12] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[13] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L and Feng J 2012 Nat. Commun. 3 887
[14] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[15] Shkolnikov Y P, Poortere E P D, Tutuc E and Shayegan M 2020 Phys. Rev. Lett. 89 226805
[16] Zhu Z W, Collaudin A, Fauqué B, Kang W and Behnia K 2012 Nat. Phys. 8 89
[17] Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, Poortere E P D and Shayegan M 2006 Phys. Rev. Lett. 97 186404
[18] Sanchez O L, Ovchinnikov D, Misra S, Allain A and Kis A 2016 Nano Lett. 16 5792
[19] Scharf B, Xu G F, Matos-Abiague and Žutić I 2017 Phys. Rev. Lett. 119 127403
[20] Seyler K, Zhong D, Huang B, X L P, Wilson N, Taniguchi T, Watanabe K, Yao W, Xiao D, Mcguire M, Fu K and Xu X D 2018 Nano Lett. 18 3823
[21] Zhao C, Norden T, Zhang P Y, et al. 2017 Nat. Nanotechnol. 12 757
[22] Dong J and Ouyang G 2020 Chin. Phys. B 29 086403
[23] Xu L, Lu W, Hu C, et al. 2020 Chin. Phys. B 29 077304
[24] Yang H P, Yuan W J, Luo J, et al. 2019 Chin. Phys. B 28 078106
[25] Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F and Wang F 2014 Nat. Nanotechnol. 9 682
[26] Peng B, Yu G N, Liu X F, Liu B, Liang X, Bi L, Deng L J, Sum T C and Loh K P 2016 2D Materials 3 025020
[27] Ceballos F, Bellus M Z, Chiu H Y and Zhao H 2014 Acs Nano. 8 12717
[28] Ceballos F, Ju M G, Lane S D, Zeng X C and Zhao H 2017 Nano Lett. 17 1623
[29] He J Q, Kumar N, Bellus M Z, Chiu H Y, He D W, Wang Y S and Zhao H 2014 Nat. Commun. 5 5622
[30] Mishra r, Zhou W, Pennycook S J, Pantelides S T and Idrobo J C 2013 Phys. Rev. B 88 144409
[31] Ramasubramaniam A and Naveh D 2013 Phys. Rev. B 87 195201
[32] Cheng Y C, Zhu Z Y, Mi W B, Guo Z B and Schwingenschlögl U 2013 Phys. Rev. B 87 100401
[33] Cheng Y C, Zhang Q Y and Schwingenschlögl U 2014 Phys. Rev. B 89 155429
[34] Lu N, Guo H Y, Li L, Dai J, Wang L, Mei W N, Wu X J and Zeng X C 2014 Nanoscale 6 2879
[35] Cheng C and Yan H Z 2009 Physica E 41 828
[36] Li Y, Zhu H B, Wang G Q, Peng Y Z, Xu J R, Qian Z H, Bai R, Zhou G H, Yesilyurt C, Siu Z B and Jalil M B A 2018 Phys. Rev. B 97 085427
[37] Li Y, Jiang W Q, Ding G Y, Peng Y Z, Wen Z C, Wang G Q, Bai R, Qian Z H, Xiao X B and Zhou G H 2019 J. Appl. Phys. 125 244304
[38] MacNeill D, Heikes C, Mak K F, et al. 2015 Phys. Rev. Lett. 114 037401
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Blochl P E 1994 Phys. Rev. B 50 17953
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 77 3865
[43] Grimme S 2006 J. Comput. Chem. 27 1787
[44] Chang C H, Fan X F, Lin S H and Kuo J L 2013 Phys. Rev. B 88 195420
[45] Ramasubramaniam A 2012 Phys. Rev. B 86 115409
[1] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[2] Saturation thickness of stacked SiO2 in atomic-layer-deposited Al2O3 gate on 4H-SiC
Zewei Shao(邵泽伟), Hongyi Xu(徐弘毅), Hengyu Wang(王珩宇), Na Ren(任娜), and Kuang Sheng(盛况). Chin. Phys. B, 2023, 32(8): 087106.
[3] Measurement of remanent magnetic moment using a torsion pendulum with single frequency modulation method
Min-Na Qiao(乔敏娜), Lu-Hua Liu(刘鲁华), Bo-Song Cai(蔡柏松), Ya-Ting Zhang(张雅婷),Qing-Lan Wang(王晴岚), Jia-Hao Xu(徐家豪), and Qi Liu(刘祺). Chin. Phys. B, 2023, 32(5): 050702.
[4] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
[5] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[6] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[7] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[8] Moiré Dirac fermions in transition metal dichalcogenides heterobilayers
Chenglong Che(车成龙), Yawei Lv(吕亚威), and Qingjun Tong(童庆军). Chin. Phys. B, 2023, 32(10): 107307.
[9] Photoinduced valley-dependent equal-spin Andreev reflection in Ising superconductor junction
Wei-Tao Lu(卢伟涛), Yue Mao(毛岳), and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2023, 32(10): 107403.
[10] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[11] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[14] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[15] Characterization of inner layer thickness change of a composite circular tube using nonlinear circumferential guided wave:A feasibility study
Ming-Liang Li(李明亮), Guang-Jian Gao(高广健), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2021, 30(8): 084301.
No Suggested Reading articles found!