Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107505    DOI: 10.1088/1674-1056/acedf8
RAPID COMMUNICATION Prev   Next  

Nonlinear three-magnon scattering in low-damping La0.67Sr0.33MnO3 thin films

Yuelin Zhang(张跃林)1,2, Lutong Sheng(盛路通)1, Jilei Chen(陈济雷)2,3, Jie Wang(王婕)4, Zengtai Zhu(朱增泰)5, Rundong Yuan(袁润东)1, Jingdi Lu(鲁京迪)6,4, Hanchen Wang(王涵晨)1, Sijie Hao(郝思洁)4, Peng Chen(陈鹏)7, Guoqiang Yu(于国强)5,7, Xiufeng Han(韩秀峰)7, and Haiming Yu(于海明)1,2,†
1 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China;
2 International Quantum Academy, Shenzhen 518048, China;
3 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518048, China;
4 Department of Physics, Beijing Normal University, Beijing 100191, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China;
6 Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
7 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Three-magnon scattering, a nonlinear process in which a high-energy magnon splits into two low-energy magnons with energy and momentum conservation, has been widely studied in the magnonics community. Here, we report experimental observation of nonlinear three-magnon scattering in La0.67Sr0.33MnO3 thin films with low magnetic damping (~ 10-4) by all-electric and angle-resolved spin wave spectroscopy. The reflection spectra of the spin wave resonance with high-power excitation at Damon-Eshbach configuration demonstrate a scattering regime with gradual signal disappearance, where a magnon of Damon-Eshbach mode decays into two magnons of volume mode above the threshold power (-10 dBm) of the injected microwave. The nonlinear scattering is only allowed at low-field regime and the calculated dispersions of dipole-exchange spin wave claim the mechanism of allowed and forbidden three-magnon scattering. The films and heterostructures of La0.67Sr0.33MnO3 have been already demonstrated with rich physical phenomena and great versatility, in this work the nonlinear magnetic dynamics of La0.67Sr0.33MnO3 thin films is revealed, which offer more possibility for applications to oxide magnonics and nonlinear magnonic devices.
Keywords:  spin wave resonance      nonlinear scattering      LSMO films      microwave antenna  
Received:  10 July 2023      Revised:  28 July 2023      Accepted manuscript online:  08 August 2023
PACS:  75.30.Ds (Spin waves)  
  75.78.-n (Magnetization dynamics)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402801). Yuelin Zhang thanks the support from the China Postdoctoral Science Foundation Funded Project (Grant No. 2021M700344). Project supported also by the National Natural Science Foundation of China (Grant Nos. 12074026, 12104208, and U1801661). Lutong Sheng thanks the support from the Academic Excellence Foundation of BUAA for PhD Students.
Corresponding Authors:  Haiming Yu     E-mail:  haiming.yu@buaa.edu.cn

Cite this article: 

Yuelin Zhang(张跃林), Lutong Sheng(盛路通), Jilei Chen(陈济雷), Jie Wang(王婕), Zengtai Zhu(朱增泰), Rundong Yuan(袁润东), Jingdi Lu(鲁京迪), Hanchen Wang(王涵晨), Sijie Hao(郝思洁), Peng Chen(陈鹏), Guoqiang Yu(于国强), Xiufeng Han(韩秀峰), and Haiming Yu(于海明) Nonlinear three-magnon scattering in low-damping La0.67Sr0.33MnO3 thin films 2023 Chin. Phys. B 32 107505

[1] Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233
[2] Ostrovsky L A 1999 J. Acoust. Soc. Am. 105 578
[3] Shao L, Mao W, Maity S, Sinclair N, Hu Y, Yang L and Lončar M 2020 Nat. Electron. 3 267
[4] Wu W J, Xu D, Qian J, Li J, Wang Y P and You J Q 2022 Chin. Phys. B 31 127503
[5] Lévov V 1994 Wave turbulence under parametric excitations: applications to magnetics (Berlin: Springer)
[6] Kauranen M and Zayats A V 2012 Nat. Photon. 6 737
[7] Han X F, Wan C H, Wu H, Guo C Y, Tang P, Yan Z R, Xing Y W, He W Q and Yu G Q 2022 Chin. Phys. B 31 117504
[8] Demokritov S 2001 Phys. Rep. 348 441
[9] Schultheiss K, Verba R, Wehrmann F, Wagner K, Korber L, Hula T, Hache T, Kakay A, Awad A A, Tiberkevich V, Slavin A N, Fassbender J and Schultheiss H 2019 Phys. Rev. Lett. 122 097202
[10] Brächer T, Pirro P and Hillebrands B 2017 Phys. Rep. 699 1
[11] Schneider M, Bracher T, Breitbach D, Lauer V, Pirro P, Bozhko D A, Musiienko-Shmarova H Y, Heinz B, Wang Q, Meyer T, Heussner F, Keller S, Papaioannou E T, Lagel B, Lober T, Dubs C, Slavin A N, Tiberkevich V S, Serga A A, Hillebrands B and Chumak A V 2020 Nat. Nanotechnol. 15 457
[12] Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M and You J Q 2016 Phys. Rev. B 94 224410
[13] Xiao Y, Wang H, Wang D, Lu R, Yan X, Guo H, Hu C M, Xia K, Zhang H and Xing D 2021 Phys. Rev. B 104 115147
[14] Gurevich A G and Melkov G A 1996 Magnetization oscillations and waves (CRC press)
[15] Slavin A and Tiberkevich V 2009 IEEE Trans. Magn. 45 1875
[16] Ustinov A B, Drozdovskii A V and Kalinikos B A 2010 Appl. Phys. Lett. 96 142513
[17] Pirro P, Vasyuchka V I, Serga A A and Hillebrands B 2021 Nat. Rev. Mater.
[18] Synogach V T, Fetisov Y K, Mathieu C and Patton C E 2000 Phys. Rev. Lett. 85 2184
[19] Kurebayashi H, Dzyapko O, Demidov V E, Fang D, Ferguson A J and Demokritov S O 2011 Nat. Mater. 10 660
[20] Sheng L, Elyasi M, Chen J, He W, Wang Y, Wang H, Feng H, Zhang Y, Medlej I, Liu S, Jiang W, Han X, Yu D, Ansermet J P, Bauer G E W and Yu H 2023 Phys. Rev. Lett. 130 046701
[21] Mathieu C, Synogatch V T and Patton C E 2003 Phys. Rev. B 67 104402
[22] Schultheiss H, Janssens X, van Kampen M, Ciubotaru F, Hermsdoerfer S J, Obry B, Laraoui A, Serga A A, Lagae L, Slavin A N, Leven B and Hillebrands B 2009 Phys. Rev. Lett. 103 157202
[23] Korber L, Schultheiss K, Hula T, Verba R, Fassbender J, Kakay A and Schultheiss H 2020 Phys. Rev. Lett. 125 207203
[24] Bertelli I, Simon B G, Yu T, Aarts J, Bauer G E W, Blanter Y M and Sar T 2021 Adv. Quantum Technol. 4 2100094
[25] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425
[26] Yi D, Liu J, Hsu S L, Zhang L, Choi Y, Kim J W, Chen Z, Clarkson J D, Serrao C R, Arenholz E, Ryan P J, Xu H, Birgeneau R J and Ramesh R 2016 Proc. Natl. Acad. Sci. USA 113 6397
[27] Zhang H, Zhang J, Zhang J E, Han F R, Huang H L, Song J H, Shen B G and Sun J R 2019 Chin. Phys. B 28 037501
[28] Wahler M, Homonnay N, Richter T, Muller A, Eisenschmidt C, Fuhrmann B and Schmidt G 2016 Sci. Rep. 6 28727
[29] Luo G Y, Lin J G, Chiang W C and Chang C R 2017 Sci. Rep. 7 6612
[30] Zhang Y, Chen J, Zhang J and Yu H 2022 Appl. Phys. Rev. 9 041312
[31] Liu C, Wu S, Zhang J, Chen J, Ding J, Ma J, Zhang Y, Sun Y, Tu S, Wang H, Liu P, Li C, Jiang Y, Gao P, Yu D, Xiao J, Duine R, Wu M, Nan C W, Zhang J and Yu H 2019 Nat. Nanotechnol. 14 691
[32] Zhang J, Chen M, Chen J, Yamamoto K, Wang H, Hamdi M, Sun Y, Wagner K, He W, Zhang Y, Ma J, Gao P, Han X, Yu D, Maletinsky P, Ansermet J P, Maekawa S, Grundler D, Nan C W and Yu H 2021 Nat. Commun. 12 7258
[33] Chen J, Yamamoto K, Zhang J, Ma J, Wang H, Sun Y, Chen M, Ma J, Liu S, Gao P, Yu D, Ansermet J P, Nan C W, Maekawa S and Yu H 2023 Phys. Rev. Appl. 19 024046
[34] Qin Q, He S, Song W, Yang P, Wu Q, Feng Y P and Chen J 2017 Appl. Phys. Lett. 110 112401
[35] Zhang Y, Liu J, Dong Y, Wu S, Zhang J, Wang J, Lu J, Rückriegel A, Wang H, Duine R, Yu H, Luo Z, Shen K and Zhang J 2021 Phys. Rev. Lett. 127 117204
[36] Kuanr B, Camley R E and Celinski Z 2005 Appl. Phys. Lett. 87 012502
[37] Kalinikos B A and Slavin A N 1986 J. Phys. C: Solid State Phys. 19 7013
[38] Wang H, He W, Yuan R, Wang Y, Wang J, Zhang Y, Medlej I, Chen J, Yu G, Han X, Ansermet J-P and Yu H 2022 Phys. Rev. B 106 064410
[39] Wang J, Xie L S, Wang C S, Zhang H Z, Shu L, Bai J, Chai Y S, Zhao X, Nie J C, Cao C B, Gu C Z, Xiong C M, Sun Y, Shi J, Salahuddin S, Xia K, Nan C W and Zhang J X 2014 Phys. Rev. B 90 224407
[40] Prabhakar A and Stancil D D 2009 Spin waves: Theory and applications, Vol. 5 (Springer)
[41] Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202
[42] Zhou Z W, Wang X G, Nie Y Z, Xia Q L and Guo G H 2021 J. Magn. Magn. Mater. 534 168046
[43] Zhang B, Wang Z, Cao Y, Yan P and Wang X R 2018 Phys. Rev. B 97 094421
[1] Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality
Xue-Feng Zhang(张雪枫), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2023, 32(10): 107501.
[2] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[3] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[4] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[5] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[6] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[7] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
[8] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[9] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[10] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[11] Spin torque nano-oscillators with a perpendicular spin polarizer
Cuixiu Zheng(郑翠秀), Hao-Hsau Chen(陈浩轩), Xiangli Zhang(张祥丽), Zongzhi Zhang(张宗芝), Yaowen Liu(刘要稳). Chin. Phys. B, 2019, 28(3): 037503.
[12] Modulational instability, quantum breathers and two-breathers in a frustrated ferromagnetic spin lattice under an external magnetic field
Wanhan Su(苏琬涵), Jiayu Xie(谢家玉), Tianle Wu(吴天乐), Bing Tang(唐炳). Chin. Phys. B, 2018, 27(9): 097501.
[13] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[14] Dynamics of magnetic skyrmions
Liu Ye-Hua (刘冶华), Li You-Quan (李有泉). Chin. Phys. B, 2015, 24(1): 017506.
[15] Angle-dependent spin waves in antidot bilayers
Hu Chun-Lian (胡春莲), Liao Leng (廖棱), Stamps R. Chin. Phys. B, 2014, 23(12): 127501.
No Suggested Reading articles found!