|
|
Nonlinear three-magnon scattering in low-damping La0.67Sr0.33MnO3 thin films |
Yuelin Zhang(张跃林)1,2, Lutong Sheng(盛路通)1, Jilei Chen(陈济雷)2,3, Jie Wang(王婕)4, Zengtai Zhu(朱增泰)5, Rundong Yuan(袁润东)1, Jingdi Lu(鲁京迪)6,4, Hanchen Wang(王涵晨)1, Sijie Hao(郝思洁)4, Peng Chen(陈鹏)7, Guoqiang Yu(于国强)5,7, Xiufeng Han(韩秀峰)7, and Haiming Yu(于海明)1,2,† |
1 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China; 2 International Quantum Academy, Shenzhen 518048, China; 3 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518048, China; 4 Department of Physics, Beijing Normal University, Beijing 100191, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China; 6 Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 7 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Three-magnon scattering, a nonlinear process in which a high-energy magnon splits into two low-energy magnons with energy and momentum conservation, has been widely studied in the magnonics community. Here, we report experimental observation of nonlinear three-magnon scattering in La0.67Sr0.33MnO3 thin films with low magnetic damping (~ 10-4) by all-electric and angle-resolved spin wave spectroscopy. The reflection spectra of the spin wave resonance with high-power excitation at Damon-Eshbach configuration demonstrate a scattering regime with gradual signal disappearance, where a magnon of Damon-Eshbach mode decays into two magnons of volume mode above the threshold power (-10 dBm) of the injected microwave. The nonlinear scattering is only allowed at low-field regime and the calculated dispersions of dipole-exchange spin wave claim the mechanism of allowed and forbidden three-magnon scattering. The films and heterostructures of La0.67Sr0.33MnO3 have been already demonstrated with rich physical phenomena and great versatility, in this work the nonlinear magnetic dynamics of La0.67Sr0.33MnO3 thin films is revealed, which offer more possibility for applications to oxide magnonics and nonlinear magnonic devices.
|
Received: 10 July 2023
Revised: 28 July 2023
Accepted manuscript online: 08 August 2023
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
|
75.78.-n
|
(Magnetization dynamics)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402801). Yuelin Zhang thanks the support from the China Postdoctoral Science Foundation Funded Project (Grant No. 2021M700344). Project supported also by the National Natural Science Foundation of China (Grant Nos. 12074026, 12104208, and U1801661). Lutong Sheng thanks the support from the Academic Excellence Foundation of BUAA for PhD Students. |
Corresponding Authors:
Haiming Yu
E-mail: haiming.yu@buaa.edu.cn
|
Cite this article:
Yuelin Zhang(张跃林), Lutong Sheng(盛路通), Jilei Chen(陈济雷), Jie Wang(王婕), Zengtai Zhu(朱增泰), Rundong Yuan(袁润东), Jingdi Lu(鲁京迪), Hanchen Wang(王涵晨), Sijie Hao(郝思洁), Peng Chen(陈鹏), Guoqiang Yu(于国强), Xiufeng Han(韩秀峰), and Haiming Yu(于海明) Nonlinear three-magnon scattering in low-damping La0.67Sr0.33MnO3 thin films 2023 Chin. Phys. B 32 107505
|
[1] Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233 [2] Ostrovsky L A 1999 J. Acoust. Soc. Am. 105 578 [3] Shao L, Mao W, Maity S, Sinclair N, Hu Y, Yang L and Lončar M 2020 Nat. Electron. 3 267 [4] Wu W J, Xu D, Qian J, Li J, Wang Y P and You J Q 2022 Chin. Phys. B 31 127503 [5] Lévov V 1994 Wave turbulence under parametric excitations: applications to magnetics (Berlin: Springer) [6] Kauranen M and Zayats A V 2012 Nat. Photon. 6 737 [7] Han X F, Wan C H, Wu H, Guo C Y, Tang P, Yan Z R, Xing Y W, He W Q and Yu G Q 2022 Chin. Phys. B 31 117504 [8] Demokritov S 2001 Phys. Rep. 348 441 [9] Schultheiss K, Verba R, Wehrmann F, Wagner K, Korber L, Hula T, Hache T, Kakay A, Awad A A, Tiberkevich V, Slavin A N, Fassbender J and Schultheiss H 2019 Phys. Rev. Lett. 122 097202 [10] Brächer T, Pirro P and Hillebrands B 2017 Phys. Rep. 699 1 [11] Schneider M, Bracher T, Breitbach D, Lauer V, Pirro P, Bozhko D A, Musiienko-Shmarova H Y, Heinz B, Wang Q, Meyer T, Heussner F, Keller S, Papaioannou E T, Lagel B, Lober T, Dubs C, Slavin A N, Tiberkevich V S, Serga A A, Hillebrands B and Chumak A V 2020 Nat. Nanotechnol. 15 457 [12] Wang Y P, Zhang G Q, Zhang D, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M and You J Q 2016 Phys. Rev. B 94 224410 [13] Xiao Y, Wang H, Wang D, Lu R, Yan X, Guo H, Hu C M, Xia K, Zhang H and Xing D 2021 Phys. Rev. B 104 115147 [14] Gurevich A G and Melkov G A 1996 Magnetization oscillations and waves (CRC press) [15] Slavin A and Tiberkevich V 2009 IEEE Trans. Magn. 45 1875 [16] Ustinov A B, Drozdovskii A V and Kalinikos B A 2010 Appl. Phys. Lett. 96 142513 [17] Pirro P, Vasyuchka V I, Serga A A and Hillebrands B 2021 Nat. Rev. Mater. [18] Synogach V T, Fetisov Y K, Mathieu C and Patton C E 2000 Phys. Rev. Lett. 85 2184 [19] Kurebayashi H, Dzyapko O, Demidov V E, Fang D, Ferguson A J and Demokritov S O 2011 Nat. Mater. 10 660 [20] Sheng L, Elyasi M, Chen J, He W, Wang Y, Wang H, Feng H, Zhang Y, Medlej I, Liu S, Jiang W, Han X, Yu D, Ansermet J P, Bauer G E W and Yu H 2023 Phys. Rev. Lett. 130 046701 [21] Mathieu C, Synogatch V T and Patton C E 2003 Phys. Rev. B 67 104402 [22] Schultheiss H, Janssens X, van Kampen M, Ciubotaru F, Hermsdoerfer S J, Obry B, Laraoui A, Serga A A, Lagae L, Slavin A N, Leven B and Hillebrands B 2009 Phys. Rev. Lett. 103 157202 [23] Korber L, Schultheiss K, Hula T, Verba R, Fassbender J, Kakay A and Schultheiss H 2020 Phys. Rev. Lett. 125 207203 [24] Bertelli I, Simon B G, Yu T, Aarts J, Bauer G E W, Blanter Y M and Sar T 2021 Adv. Quantum Technol. 4 2100094 [25] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425 [26] Yi D, Liu J, Hsu S L, Zhang L, Choi Y, Kim J W, Chen Z, Clarkson J D, Serrao C R, Arenholz E, Ryan P J, Xu H, Birgeneau R J and Ramesh R 2016 Proc. Natl. Acad. Sci. USA 113 6397 [27] Zhang H, Zhang J, Zhang J E, Han F R, Huang H L, Song J H, Shen B G and Sun J R 2019 Chin. Phys. B 28 037501 [28] Wahler M, Homonnay N, Richter T, Muller A, Eisenschmidt C, Fuhrmann B and Schmidt G 2016 Sci. Rep. 6 28727 [29] Luo G Y, Lin J G, Chiang W C and Chang C R 2017 Sci. Rep. 7 6612 [30] Zhang Y, Chen J, Zhang J and Yu H 2022 Appl. Phys. Rev. 9 041312 [31] Liu C, Wu S, Zhang J, Chen J, Ding J, Ma J, Zhang Y, Sun Y, Tu S, Wang H, Liu P, Li C, Jiang Y, Gao P, Yu D, Xiao J, Duine R, Wu M, Nan C W, Zhang J and Yu H 2019 Nat. Nanotechnol. 14 691 [32] Zhang J, Chen M, Chen J, Yamamoto K, Wang H, Hamdi M, Sun Y, Wagner K, He W, Zhang Y, Ma J, Gao P, Han X, Yu D, Maletinsky P, Ansermet J P, Maekawa S, Grundler D, Nan C W and Yu H 2021 Nat. Commun. 12 7258 [33] Chen J, Yamamoto K, Zhang J, Ma J, Wang H, Sun Y, Chen M, Ma J, Liu S, Gao P, Yu D, Ansermet J P, Nan C W, Maekawa S and Yu H 2023 Phys. Rev. Appl. 19 024046 [34] Qin Q, He S, Song W, Yang P, Wu Q, Feng Y P and Chen J 2017 Appl. Phys. Lett. 110 112401 [35] Zhang Y, Liu J, Dong Y, Wu S, Zhang J, Wang J, Lu J, Rückriegel A, Wang H, Duine R, Yu H, Luo Z, Shen K and Zhang J 2021 Phys. Rev. Lett. 127 117204 [36] Kuanr B, Camley R E and Celinski Z 2005 Appl. Phys. Lett. 87 012502 [37] Kalinikos B A and Slavin A N 1986 J. Phys. C: Solid State Phys. 19 7013 [38] Wang H, He W, Yuan R, Wang Y, Wang J, Zhang Y, Medlej I, Chen J, Yu G, Han X, Ansermet J-P and Yu H 2022 Phys. Rev. B 106 064410 [39] Wang J, Xie L S, Wang C S, Zhang H Z, Shu L, Bai J, Chai Y S, Zhao X, Nie J C, Cao C B, Gu C Z, Xiong C M, Sun Y, Shi J, Salahuddin S, Xia K, Nan C W and Zhang J X 2014 Phys. Rev. B 90 224407 [40] Prabhakar A and Stancil D D 2009 Spin waves: Theory and applications, Vol. 5 (Springer) [41] Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202 [42] Zhou Z W, Wang X G, Nie Y Z, Xia Q L and Guo G H 2021 J. Magn. Magn. Mater. 534 168046 [43] Zhang B, Wang Z, Cao Y, Yan P and Wang X R 2018 Phys. Rev. B 97 094421 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|