CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide |
Fu Wang(王甫)1, Yandong Sun(孙彦东)2, Yu Zou(邹宇)1, Ben Xu(徐贲)2, and Baoqin Fu(付宝勤)1,† |
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; 2 Graduate School, China Academy of Engineering Physics, Beijing 100193, China |
|
|
Abstract Stacking faults (SFs) are often present in silicon carbide (SiC) and affect its thermal and heat-transport properties. However, it is unclear how SFs influence thermal transport. Using non-equilibrium molecular dynamics and lattice dynamics simulations, we studied phonon transport in SiC materials with an SF. Compared to perfect SiC materials, the SF can reduce thermal conductivity. This is caused by the additional interface thermal resistance (ITR) of SF, which is difficult to capture by the previous phenomenological models. By analyzing the spectral heat flux, we find that SF reduces the contribution of low-frequency (7.5 THz-12 THz) phonons to the heat flux, which can be attributed to SF reducing the phonon lifetime and group velocity, especially in the low-frequency range. The SF hinders phonon transport and results in an effective interface thermal resistance around the SF. Our results provide insight into the microscopic mechanism of the effect of defects on heat transport and have guiding significance for the regulation of the thermal conductivity of materials.
|
Received: 26 March 2023
Revised: 02 June 2023
Accepted manuscript online: 20 June 2023
|
PACS:
|
63.20.D-
|
(Phonon states and bands, normal modes, and phonon dispersion)
|
|
61.72.Nn
|
(Stacking faults and other planar or extended defects)
|
|
51.20.+d
|
(Viscosity, diffusion, and thermal conductivity)
|
|
Fund: roject supported by Sichuan Science and Technology Program (Grant No. 2023NSFSC0044), the National Natural Science Foundation of China (Grant No. 51501119), and the Fundamental Research Funds for the Central Universities. The authors acknowledge that this study was also partially supported by the High-Performance Computing Center at Sichuan University. |
Corresponding Authors:
Baoqin Fu
E-mail: bqfu@scu.edu.cn
|
Cite this article:
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤) Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide 2023 Chin. Phys. B 32 096301
|
[1] Katoh Y and Snead L L 2019 J. Nucl. Mater. 526 151849 [2] Yueh K and Terrani K A 2014 J. Nucl. Mater. 448 380 [3] Snead L L, Nozawa T, Katoh Y, Byun T S, Kondo S and Petti D A 2007 J. Nucl. Mater. 371 329 [4] Millan J, Godignon P, Perpina X, Perez-Tomas A and Rebollo J 2014 IEEE Trans. Power Electron. 29 2155 [5] Guo X R, Xun Q, Li Z X and Du S X 2019 Micromachines 10 406 [6] She X, Huang A Q, Lucia O and Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193 [7] Daghbouj N, Li B S, Callisti M, Sen H S, Karlik M and Polcar T 2019 Acta Mater. 181 160 [8] Choi J H, Pala M, Latu-Romain L and Bano E 2012 Mater. Sci. Forum 717-720 561 [9] Huang Z, Lü T Y, Wang H Q and Zheng J C 2015 AIP Adv. 5 097204 [10] Kim J G, Choi Y Y, Choi D J and Choi S M 2011 J. Electron. Mater. 40 840 [11] Masuda M, Mabuchi H, Tsuda H, Matsui T and Morii K 2002 Mater. Sci. Forum 389-393 763 [12] Li J, Porter L and Yip S 1998 J. Nucl. Mater. 255 139 [13] Senor D J, Youngblood G E, Moore C E, Trimble D J, Newsome G A and Woods J J 1996 Fusion Technol. 30 943 [14] Kawamura T, Hori D, Kangawa Y, Kakimoto K, Yoshimura M and Mori Y 2008 Jpn. J. Appl. Phys. 47 8898 [15] Sparavigna A 2002 Phys. Rev. B 66 174301 [16] Wang F, Zhou Y, Gao S X, Duan Z G, Sun Z P, Wang J, Zou Y and Fu B Q 2022 Acta Phys. Sin. 71 036501 (in Chinese) [17] Wang Q, Gui N, Huang X L, Yang X T, Tu J Y and Jiang S Y 2021 Int. J. Heat Mass Transfer 180 121822 [18] Ni Y X, Xiong S Y, Volz S and Dumitrica T 2014 Phys. Rev. Lett. 113 124301 [19] Goel N, Webb III E B, Rickman J M, Oztekin A and Neti S 2016 AIP Adv. 6 075101 [20] Zimbone M, Barbagiovanni E G, Bongiorno C, Calabretta C, Calcagno L, Fisicaro G, La Magna A and La Via F 2020 Cryst. Growth Des. 20 3104 [21] Yamasaki J, Inamoto S, Nomura Y, Tamaki H and Tanaka N 2012 J. Phys. D: Appl. Phys. 45 494002 [22] Marinova M, Mercier F, Mantzari A, Galben I, Chaussende D and Polychroniadis E K 2009 Physica B 404 4749 [23] Zimbone M, Sarikov A, Bongiorno C, Marzegalli A, Scuderi V, Calabretta C, Miglio L and La Via F 2021 Acta Mater. 213 116915 [24] Lin Y R, Ho C Y, Hsieh C Y, Chang M T, Lo S C, Chen F R and Kai J J 2014 Appl. Phys. Lett. 104 121909 [25] Goela J S, Brese N E, Pickering M A and Graebner J E 2001 MRS Bull. 26 458 [26] Iwata H P, Lindefelt U, Öberg S and Briddon P R 2003 Phys. Rev. B 68 113202 [27] Carrete J, López-Suárez M, Raya-Moreno M, Bochkarev A S, Royo M, Madsen G K H, Cartoixá X, Mingo N and Rurali R 2019 Nanoscale 11 16007 [28] Yan X X, Liu C Y, Gadre C A, Gu L, Aoki T, Lovejoy T C, Dellby N, Krivanek O L, Schlom D G, Wu R Q and Pan X Q 2021 Nature 589 65 [29] Goel N, Webb III E B, Oztekin A, Rickman J M and Neti S 2015 J. Appl. Phys. 118 115101 [30] Liu Y G, Zhang J W, Ren G L and Chernatynskiy A 2022 Int. J. Heat Mass Transfer 189 122700 [31] Sääskilahti K, Oksanen J, Volz S and Tulkki J 2015 Phys. Rev. B 91 115426 [32] Sun Y D, Zhou Y G, Han J, Liu W, Nan C W, Lin Y H, Hu M and Xu B 2019 npj Comput. Mater. 5 97 [33] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in 't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171 [34] Fu B Q, Sun Y D, Zhang L F, Wang H and Xu B 2021 arXiv prep rint arXiv: 2110.10843 [cond-mat.mtrl-sci] [35] Gronbech-Jensen N 2020 Mol. Phys. 118 1662506 [36] Phillpot S R and McGaughey A J H 2005 Mater. Today 8 18 [37] Sääskilahti K, Oksanen J, Tulkki J and Volz S 2016 Phys. Rev. E 93 052141 [38] Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306 [39] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [40] Mizokami K, Togo A and Tanaka I 2018 Phys. Rev. B 97 224306 [41] Crocombette J P and Gelebart L 2009 J. Appl. Phys. 106 083520 [42] Sellan D P, Landry E S, Turney J E, McGaughey A J H and Amon C H 2010 Phys. Rev. B 81 214305 [43] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306 [44] Fu B Q, Lai W S, Yuan Y, Xu H Y and Liu W 2012 J. Nucl. Mater. 427 268 [45] Landry E S and McGaughey A J H 2009 Phys. Rev. B 80 165304 [46] Watanabe T, Ni B, Phillpot S R, Schelling P K and Keblinski P 2007 J. Appl. Phys. 102 063503 [47] Liang Z, Sasikumar K and Keblinski P 2014 Phys. Rev. Lett. 113 065901 [48] Rurali R, Colombo L, Cartoixá X, Wilhelmsen O, Trinh T T, Bedeaux D and Kjelstrup S 2016 Phys. Chem. Chem. Phys. 18 13741 [49] Polanco C A and Lindsay L 2019 Phys. Rev. B 99 075202 [50] Little W A 1959 Can. J. Phys. 37 334 [51] Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605 [52] Dickey J M and Paskin A 1969 Phys. Rev. 188 1407 [53] Qian X, Zhou J W and Chen G 2021 Nat. Mater. 20 1188 [54] Wang T S, Gui Z G, Janotti A, Ni C Y and Karandikar P 2017 Phys. Rev. Mater. 1 034601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|