Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120401    DOI: 10.1088/1674-1056/ac8924
GENERAL Prev   Next  

Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers

Hong-Hao Dai(戴鸿昊)1,2, Miao-Hua Xu(徐妙华)2, Hong-Yu Guo(郭宏宇)1,2,†, Ying-Jun Li(李英骏)1,2,3,‡, and Jie Zhang(张杰)4
1 State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China;
2 School of Science, China University of Mining and Technology, Beijing 100083, China;
3 Double-cone Ignition(DCI) Joint Team, China University of Mining and Technology, Beijing 100083, China;
4 Double-cone Ignition(DCI) Joint Team, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We have derived the analytical formulas for the Kelvin-Helmholtz instability (KHI) of two superposed finite-thickness fluid layers with the magnetic field effect into consideration. The linear growth rate of KHI will be reduced when the thickness of the fluid with large density is decreased or the thickness of fluid with small density is increased. When the thickness and the magnetic field act together on the KHI, the effect of thickness is more obvious when the magnetic field intensity is weak. The magnetic field transition layer destabilizes (enforces) the KHI, especially in the case of small thickness of the magnetic field transition layer. When considering the effect of magnetic field, the linear growth rate of KHI always decreases after reaching the maximum with the increase of total thickness. The stronger the magnetic field intensity is, the more obvious the growth rate decreases with the total thickness. Thus, it should be included in applications where the effect of fluid thickness on the KHI cannot be ignored, such as in double-cone ignition scheme for inertial confinement fusion.
Keywords:  finite-thickness      Kelvin-Helmholtz instability      magnetohydrodynamic      inertial confinement fusion  
Received:  19 July 2022      Revised:  01 August 2022      Accepted manuscript online:  12 August 2022
PACS:  04.30.Tv (Gravitational-wave astrophysics)  
  47.20.Ft (Instability of shear flows (e.g., Kelvin-Helmholtz))  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25051000 and XDA25010100) and the Fundamental Research Funds for the Central Universities (Grant No. 2022YQLX01).
Corresponding Authors:  Hong-Yu Guo, Ying-Jun Li     E-mail:  ghy@cumtb.edu.cn;lyj@aphy.iphy.ac.cn

Cite this article: 

Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰) Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers 2022 Chin. Phys. B 31 120401

[1] Uberoi C 1984 J. Geophys. Res.: Space Physics 89 5652
[2] Soloviev A V, Lukas R, Donelan M A, Haus B K and Ginis I 2017 J. Geophys. Res.: Oceans 122 10174
[3] B A Hammel, J D Kilkenny, D Munro, B A Remington, H N Kornblum, T S Perry, D W Phillion and R J Wallace 1994 Phys. Plasmas 1 1662
[4] Spolaore N, et al. 2009 Phys. Rev. Lett. 102 165001
[5] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London: Oxford University Press)
[6] Wang L F, Ye W H and Li Y J 2008 Acta Phys. Sin. 57 3038 (in Chinese)
[7] Wang L F, Ye W H, Fan Z F and Li Y J 2009 Acta Phys. Sin. 58 4787 (in Chinese)
[8] Wang L F, Li Y J, Meng L M and Ye W H 2008 Chin. Phys. B 17 3792
[9] Wang L F, Xue C, Ye W H and Li Y J 2009 Phys. Plasmas 16 112104
[10] Wang L F, Ye W H and Li Y J 2010 Phys. Plasmas 17 042103
[11] Gratton F T, Gnavi G, Farrugia C J and Bender L 2004 Braz. J. Phys. 34 1804
[12] Sharma R C and Srivastava K M 1970 Can. J. Phys. 48 2083
[13] Zhao K G, Wang L F, Ye W H, Wu J F and Li Y J 2014 Chin. Phys. Lett. 31 030401
[14] Zhou Y 2017 Phys. Rep. 720-722 1
[15] Young Y N, Calder A C and Fryxell B 2006 Phys. Rev. E 74 66308
[16] Fang K, Zhang Z, Li Y T and Zhang J 2022 Acta Phys. Sin. 71 035204 (in Chinese)
[17] Karnig O Mikaelian 1996 Phys. Rev. E 54 3676
[18] Zhang J, et al. 2020 Phil. Trans. R. Soc. A 378 20200015
[19] Sun W, et al. 2019 High Energy Dens. Phys. 31 47
[20] D D Ryutov, M E Cuneo, M C Herrmann, D B Sinars and S A Slutz 2012 Phys. Plasmas 19 062706
[1] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[2] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[3] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[4] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[5] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[6] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[7] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[8] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[9] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[10] Effect of patterned hydrodynamic slip on electromagnetohydrodynamic flow in parallel plate microchannel
Chun-Hong Yang(杨春红) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2020, 29(11): 114101.
[11] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[12] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[13] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[14] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[15] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
No Suggested Reading articles found!