Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖)1,2, Zhicheng Xie(谢志成)1,2, Zhiyuan Zhao(赵治源)1,2, Yumin Yang(杨雨民)1,2, Na Lei(雷娜)3,†, Bingfeng Miao(缪冰锋)4, and Dahai Wei(魏大海)1,2,‡
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China; 4 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract The performance of spin-orbit torque (SOT) in heavy metal/ferromagnetic metal periodic multilayers has attracted widespread attention. In this paper, we have successfully fabricated a series of perpendicular magnetized [Pt()/Ni()] multilayers, and studied the SOT in the multilayers by varying the thickness of Ni layer . The current induced magnetization switching was achieved with a critical current density of 1 A/cm. The damping-like SOT efficiency was extracted from an extended harmonic Hall measurement. We demonstrated that the can be effectively modulated by ratio of Pt and Ni in the multilayers. The SOT investigation about the [Pt/Ni] multilayers might provide new material candidates for practical perpendicular SOT-MRAM devices.
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3502400), the National Natural Science Foundation of China (Grant Nos. 52061135105, 12074025, 11834013, and 12274203), the CAS Project for Yong Scientists in Basic Research (Grant No. YSBR-030), and the Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant Nos. XDB44000000 and XDB28000000).
Corresponding Authors:
Na Lei, Dahai Wei
E-mail: na.lei@buaa.edu.cn;dhwei@buaa.edu.cn
Cite this article:
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海) Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers 2023 Chin. Phys. B 32 107507
[1] Shao Q M, Wang Z R and Yang J J 2022 Nat. Electron.5 67 [2] Wang J, Bai Y, Wang H, et al. 2022 IEEE Transactions on Circuits and Systems I: Regular Papers69 4535 [3] Ikegawa S, Mancoff F B, Janesky J and Aggarwal S 2020 IEEE T. Electron Dev.67 1407 [4] Zhu J G J and Park C 2006 Materials today9 36 [5] Ando Y 2015 Jpn. J. Appl. Phys.54 070101 [6] Apalkov D, Dieny B and Slaughter J M 2016 Proc. IEEE104 1796 [7] Lee S W and Lee K J 2016 Proc. IEEE104 1831 [8] Meng T, Ka S J and Shijie X 2020 Adv. Mater.32 2002607 [9] Yu J, Qiu X, Wu Y, et al. 2016 Sci. Rep.6 32629 [10] Zhang C, Takeuchi Y, Fukami S and Ohno H 2021 Appl. Phys. Lett.118 092406 [11] Safranski C, Sun J A T Z and Kent A D 2022 Appl. Phys. Lett.120 160502 [12] Lang L, Jiang Y, Lu F, et al. 2020 Appl. Phys. Lett.116 022409 [13] Liu T, Cai J W and Sun L 2012 AIP Advances2 032151 [14] Ikeda S, Miura K, Yamamoto H, et al. 2010 Nat. Mater.9 721 [15] Xu Y, Chen D, Tong S, et al. 2020 Phys. Rev. Applied14 034064 [16] Chen D, Xu Y, Tong S, et al. 2022 Phys. Rev. Materials6 014402 [17] Takahashi Y K, Ohnuma M and Hono K 2001 Jpn. J. Appl. Phys.40 L1367 [18] Meng K K, Miao J, Xu X G, et al. 2016 Phys. Rev. B94 214413 [19] Liu L, Zhou C, Zhao T, et al. 2022 Nat. Commun.13 3539 [20] Nemoto H and Hosoe Y 2005 J. Appl. Phys.97 10J109 [21] Kamzin A S, Wei F L, Ganeev V R, et al. 2014 Tech. Phys.59 452 [22] Shin S C, Srinivas G, Kim Y S and Kim M G 1998 Appl. Phys. Lett.73 393 [23] Seki T, Tsujikawa M, Ito K, et al. 2020 Phys. Rev. Materials4 064413 [24] Zhou H, Wang C, Li Z, et al. 2020 AIP Advances10 015317 [25] Vedmedenko E Y, Kawakami R K, Sheka D D, et al. 2020 J. Phys. D: Appl. Phys.53 453001 [26] Ramaswamy R, Lee J M, Cai K M and Yang H 2018 Appl. Phys. Rev.5 031107 [27] Golod T, Rydh A and Krasnov V M 2011 J. Appl. Phys.110 033909 [28] Xue F, Lin S J, Dc M, et al. 2021 Appl. Phys. Lett.118 042405 [29] Zhu L, Ralph D C and Buhrman R A 2021 Appl. Phys. Rev.8 031308 [30] Liu T X, Wang Z H, Wang M, et al. 2022 Chin. Phys. B31 107501 [31] Kim S, Jang P H, Kim D H, et al. 2017 Phys. Rev. B95 220402 [32] Zhang H C, Ma X Y, Jiang C P, et al. 2022 J. Semicond43 102501 [33] Martini M, Avci C O, Tacchi S, et al. 2022 Phys. Rev. Appl.17 044056 [34] Zhu L, Zhu L and Buhrman R A 2021 Phys. Rev. Lett.126 107204 [35] Hayashi H, Musha A, Sakimura H and Ando K 2021 Phys. Rev. Res.3 013042 [36] Chen L N, Zhan X, Zhou K Y, et al. 2022 Phys. Rev. Appl.17 064041 [37] Huang K F, Wang D S, Lin H H and Lai C H 2015 Appl. Phys. Lett.107 232407
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.