Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 076501    DOI: 10.1088/1674-1056/acc80c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Transport properties of CrP

Xuebo Zhou(周学博)1,2, Ping Zheng(郑萍)2, Wei Wu(吴伟)2,†, Yu Sui(隋郁)1,3,‡, and Jianlin Luo(雒建林)2,4,5,§
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China;
2 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  CrP has many exotic physical properties due to a four-fold degenerate band crossing at the Y point of the Brillouin zone, which is protected by the nonsymmorphic symmetry of the space group. We carried out the heat capacity, electrical and thermal transport measurements on CrP and extracted the electron thermal conductivity. Due to the difference in energy and momentum relaxation time during electron-phonon inelastic scattering, the normalized Lorentz number decreases below about 160 K. Below 25.6 K, the normalized Lorentz number begins to recover, which is due to the dominance of elastic scattering between electrons and defects at low temperatures.
Keywords:  CrP      thermal transport      Wiedemann-Franz law  
Received:  07 March 2023      Revised:  10 March 2023      Accepted manuscript online:  28 March 2023
PACS:  65.40.-b (Thermal properties of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12134018, 11921004, and 11634015), the National Key Research and Development Program of China (Grant Nos. 2022YFA1602800, 2021YFA1401800, 2017YFA0302901, 2017YFA0302903, and 2022YFA1402203), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. XDB33010100), and the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  Wei Wu, Yu Sui, Jianlin Luo     E-mail:  welyman@iphy.ac.cn;suiyu@hit.edu.cn;jlluo@iphy.ac.cn

Cite this article: 

Xuebo Zhou(周学博), Ping Zheng(郑萍), Wei Wu(吴伟), Yu Sui(隋郁), and Jianlin Luo(雒建林) Transport properties of CrP 2023 Chin. Phys. B 32 076501

[1] White G K and Tainsh R J 1960 Phys. Rev. 119 1869
[2] Tanatar M A, Paglione J, Petrovic C and Taillefer L 2007 Science 316 1320
[3] Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y and Luo J L 2014 Nat. Commun. 5 5508
[4] Kotegawa H, Nakahara S, Tou H and Sugawara H 2014 J. Phys. Soc. Jpn. 83 093702
[5] Niu Q, Yu W C, Yip K Y, Lim Z L, Kotegawa H, Matsuoka E, Sugawara H, Tou H, Yanase Y and Goh Swee K 2017 Nat. Commun. 8 15358
[6] Tremel W, Hoffmann R and Silvestre J 1986 J. Am. Chem. Soc. 108 5174
[7] Schönberg N, Overend W, Munthe-Kaas A and Sörensen N 1954 Acta Chem. Scand. 8 226
[8] Irani K S and Gingerich K A 1963 J. Phys. Chem. Solids 24 1153
[9] Niu Q, Yu W C, Aulestia E I P, Hu Y J, Lai K T, Kotegawa H, Matsuoka E, Sugawara H, Tou H, Sun D, Balakirev F F, Yanase Y and Goh S K 2019 Phys. Rev. B 99 125126
[10] https://www.topologicalquantumchemistry.org
[11] Klotz J, Götze K, Förster T, Bruin J A N, Wosnitza J, Weber K, Schmidt M, Schnelle W, Geibel C, Rößler U K and Rosner H 2019 Phys. Rev. B 99 085130
[12] Kumar N, Sun Y, Nicklas M, Watzman S J, Young O, Leermakers I, Hornung J, Klotz J, Gooth J, Manna K, Süß V, Guin S N, Förster T, Schmidt M, Muechler L, Yan B, Werner P, Schnelle W, Zeitler U, Wosnitza J, Parkin S S P, Felser C and Shekhar C 2019 Nat. Commun. 10 2475
[13] Tritt T M 2005 Thermal Conductivity: Theory, Properties, and Applications (Library of Congress Cataloging-in-Publication Data) pp. 46-61
[14] Li S H, Tong Z, Zhang X Y and Bao H 2020 Phys. Rev. B 102 174306
[15] Lavasani A, Bulmash D, and Das Sarma S 2019 Phys. Rev. B 99 085104
[16] Mahajan R, Barkeshli M and Hartnoll S A. 2013 Phys. Rev. B 88 125107
[1] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[2] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[3] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[4] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[5] The magneto-thermoelectric effect of graphene with intra-valley scattering
Wenye Duan(段文晔), Junfeng Liu(刘军丰), Chao Zhang(张潮), Zhongshui Ma(马中水). Chin. Phys. B, 2018, 27(9): 097204.
[6] Nodeless superconductivity in a quasi-two-dimensional superconductor AuTe2Se4/3
Xiao-Yu Jia(贾小雨), Yun-Jie Yu(俞云杰), Xu Chen(陈旭), Jian-Gang Guo(郭建刚), Tian-Ping Ying(应天平), Lan-Po He(何兰坡), Xiao-Long Chen(陈小龙), Shi-Yan Li(李世燕). Chin. Phys. B, 2018, 27(6): 067401.
[7] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[8] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
[9] Review of thermal transport and electronic properties of borophene
Dengfeng Li(李登峰), Ying Chen(陈颖), Jia He(何佳), Qiqi Tang(汤琪琪), Chengyong Zhong(钟承勇), Guangqian Ding(丁光前). Chin. Phys. B, 2018, 27(3): 036303.
[10] Thermal transport in twisted few-layer graphene
Min-Hua Wang(王敏华), Yue-E Xie(谢月娥), Yuan-Ping Chen(陈元平). Chin. Phys. B, 2017, 26(11): 116503.
[11] Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-xSex
Shan Cui(崔珊), Lan-Po He(何兰坡), Xiao-Chen Hong(洪晓晨), Xiang-De Zhu(朱相德), Cedomir Petrovic, Shi-Yan Li(李世燕). Chin. Phys. B, 2016, 25(7): 077403.
[12] The Wiedemann–Franz law in a normal metal–superconductor junction
R Ghanbari and G Rashedi . Chin. Phys. B, 2011, 20(12): 127401.
[13] Investigation of fabrication and hetero-epitaxy relationship of CoCrPt thin films grown on CrW underlayer
Li Song-Tian(李松田), Liu Xi(刘曦), Shi Wen-Kui(史文魁), Cao Jiang-Wei(曹江伟), Wei Fu-Lin(魏福林), and Wei Dan(韦丹). Chin. Phys. B, 2009, 18(4): 1643-1646.
No Suggested Reading articles found!