Abstract We propose an optimized scheme to determine the smearing parameter in the Gaussian function that is used to replace the Dirac δ function in the first Brillouin zone sampling. The broadening width is derived by analyzing the difference of the results from the phase-space method and Gaussian broadening method. As a demonstration, using the present approach, we investigate the phonon transport in a typical layered material, graphite. Our scheme is benchmarked by comparing with other zone sampling methods. Both the three-phonon phonon scattering rates and thermal conductivity are consistent with the prediction from the widely used tetrahedron method and adaptive broadening method. The computational efficiency of our scheme is more than one order of magnitude higher than the two other methods. Furthermore, the effect of four-phonon scattering in phonon transport in graphite is also investigated. It is found that four-phonon scattering reduces the through-plane thermal conductivity by 10%. Our methods could be a reference for the prediction of thermal conductivity of anisotropic material in the future.
Chengye Li(李承业), Changying Zhao(赵长颖), and Xiaokun Gu(顾骁坤) An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite 2023 Chin. Phys. B 32 064401
[1] Esfarjani K, Garg J and Chen G2014 Annu. Rev. Heat Transf.17 9 [2] Lindsay L2016 Nanoscale Microscale Thermophys. Eng.20 67 [3] Gu X, Fan Z and Bao H2021 J. Appl. Phys.130 210902 [4] Bao H, Chen J, Gu X and Cao B2018 ES Energy Environ.1 16 [5] Maradudin A A and Fein A E1962 Phys. Rev.128 2589 [6] Tadano T, Gohda Y and Tsuneyuki S2014 J. Phys. Condens. Matter26 225402 [7] Chernatynskiy A and Phillpot S R2015 Comput. Phys. Commun.192 196 [8] Broido D A, Ward A and Mingo N2005 Phys. Rev. B72 014308 [9] Gu X, Fan Z, Bao H and Zhao C Y2019 Phys. Rev. B100 064306 [10] Li W, Mingo N, Lindsay L, Broido D A, Stewart D A and Katcho N A2012 Phys. Rev. B85 195436 [11] Garg J, Bonini N, Kozinsky B and Marzari N2011 Phys. Rev. Lett.106 045901 [12] Esfarjani K, Chen G and Stokes H T2011 Phys. Rev. B84 085204 [13] Fugallo G, Lazzeri M, Paulatto L and Mauri F2013 Phys. Rev. B88 045430 [14] Blöchl P E, Jepsen O and Andersen O K1994 Phys. Rev. B49 16223 [15] Li W, Carrete J, Katcho N A and Mingo N2014 Comput. Phys. Commun.185 1747 [16] Lindsay L, Li W, Carrete J, Mingo N, Broido D A, and Reinecke T L2014 Phys. Rev. B89 155426 [17] Fei T, Bai S, Xi C, K. R N, Yinchuan L, Ke C, Sean S, Jaehyun K, Yuanyuan Z, Te-Huan L, Miguel G, Zhiwei D, Jingying S, Gamage U G G A, Haoran S, Hamidreza Z, Shuyuan H, Liangzi D, Jianshi Z, J. S A, Shuo C, Ching-Wu C, Y. H P, David B, Li S, Gang C and Zhifeng R2018 Science361 582 [18] Sheng L, Qiye Z, Yinchuan L, Xiaoyuan L, Xiqu W, Y. H P, G. C D and Bing L2018 Science361 579 [19] Sang K J, Man L, Huan W, Huuduy N and Yongjie H2018 Science361 575 [20] Gu X, Li S and Bao H2020 Int. J. Heat Mass Transf.160 120165 [21] Feng T and Ruan X2018 Phys. Rev. B97 045202 [22] Feng T, Lindsay L and Ruan X2017 Phys. Rev. B96 161201(R) [23] Feng T and Ruan X2016 Phys. Rev. B93 045202 [24] Liu H, Qian X, Bao H, Zhao C and Gu X2021 J. Phys. Condens. Matter33 405401 [25] Zhang B, Fan Z, Zhao C Y and Gu X 2021 J. Phys. Condens Matter33 495901 [26] Kelly B T1967 Philos. Mag.15 1005 [27] Hooker C N, Ubbelohde A R J P and Young D A1965 Proc. R. Soc. London. Ser. A. Math. Phys. Sci.284 17 [28] Wei Z, Yang F, Bi K, Yang J and Chen Y 2019 Carbon144 109 [29] Zhang H, Chen X, Jho Y D and Minnich A J2016 Nano Lett.16 1643 [30] Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N and Mauri F2014 Nano Lett.14 6109 [31] Paulatto L, Mauri F and Lazzeri M 2013 Phys. Rev. B87 214303 [32] Fu Q, Yang J, Chen Y, Li D and Xu D2015 Appl. Phys. Lett.106 031905 [33] Sun Z, Yuan K, Chang Z, Zhang X, Qin G and Tang D2019 J. Appl. Phys.126 125104 [34] Strongman P, Askarpour V and Maassen J 2021 Phys. Rev. B104 035428 [35] Yates J R, Wang X, Vanderbilt D and Souza I 2007 Phys. Rev. B75 195121 [36] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M2009 J. Phys. Condens Matter21 395502 [37] Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C2010 Phys. Rev. B82 081101(R) [38] Sabatini R, Küçükbenli E, Pham C H and De Gironcoli S2016 Phys. Rev. B93 235120 [39] Wirtz L and Rubio A2004 Solid State Commun.131 141 [40] Nicklow R, Wakabayashi N and Smith H G1972 Phys. Rev. B5 4951 [41] Mohr M, Maultzsch J, Dobardžić E, Reich S, Milošević I, Damnjanović M, Bosak A, Krisch M and Thomsen C 2007 Phys. Rev. B76 035439 [42] Maultzsch J, Reich S, Thomsen C, Requardt H and Ordejón P2004 Phys. Rev. Lett.92 075501 [43] Ho C Y, Powell R W and Liley P E1972 J. Phys. Chem. Ref. Data1 279 [44] Mingo N and Broido D A2005 Nano Lett.5 1221
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.