Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067101    DOI: 10.1088/1674-1056/ac8cd9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural and mass transport properties of liquid ytterbium in the temperature range 1123 K-1473 K

D D Satikunvar1,†, N K Bhatt2, and B Y Thakore1
1 Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India;
2 Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat 364001, India
Abstract  We have studied the structural and atomic transport properties of liquid f-shell Yb in the temperature range 1123 K-1473 K. Pair interactions between atoms are derived using a local pseudopotential. The potential parameters are fitted to the phonon dispersion curve at room temperature. The local pseudopotential used in the present study is computationally more efficient with only three parameters, and it is found to be transferable to the liquid phase without changing the parameters. Since the various computed properties agree with reported theoretical and experimental findings, the adopted fitting scheme is justified. As a significant outcome of the study, we find that (i) the melting in Yb is governed by the Lindemann's law, (ii) the mass transport mechanism obeys the Arrhenius law, (iii) the role of the three-particle correlation function in deriving the velocity autocorrelation function is small, (iv) the mean-square atomic displacement is more sensitive to the choice of interaction potential than the other bulk properties, and (v) liquid Yb does not show liquid-liquid phase transition within the studied temperature range. Further, due to the good description of the structural and mass transport properties, we propose that Yb remains divalent at reduced density.
Keywords:  transport properties      pseudopotential      single-particle dynamics      ytterbium  
Received:  11 April 2022      Revised:  09 August 2022      Accepted manuscript online:  26 August 2022
PACS:  61.25.Mv (Liquid metals and alloys)  
  71.20.Eh (Rare earth metals and alloys)  
  66.10.cg (Mass diffusion, including self-diffusion, mutual diffusion, tracer diffusion, etc.)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
Corresponding Authors:  D D Satikunvar     E-mail:  dhavalsatikunvar@gmail.com

Cite this article: 

D D Satikunvar, N K Bhatt, and B Y Thakore Structural and mass transport properties of liquid ytterbium in the temperature range 1123 K-1473 K 2023 Chin. Phys. B 32 067101

[1] Hammond C R 2000 The element, in Handbook of Chemistry and Physics (CRC Press)
[2] Geong Y, Sahu J K, Pagne D N and Nilsson J 2004 Opt. Exp. 12 6008
[3] Wang J Q, Wang W H and Bai H Y2009 J. Appl. Phys. Lett. 94 041910
[4] Novikov V N and Sokolov A P2006 Phys. Rev. B 74 064203
[5] Wang W H 2006 J. Appl. Phys. 99 096506
[6] Wang Y Y, Zhao W, Li G, Li Y C and Liu R P2013 Mater. Lett. 110 184
[7] Shimoji M 1977 Liquid Metals: An Introduction to the Physics and Chemistry of Metals in the Liquid State (Academic Press)
[8] Brooks B R, et al.2009 J. Comput. Chem. 30 1545
[9] Phillips J C, et al.2005 J. Comput. Chem. 26 1781
[10] Case D A, et al.2006 J. Comput. Chem. 26 1668
[11] Spoel D V, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C2005 J. Comput. Chem. 26 1701
[12] Christen M, et al.2005 J. Comput. Chem. 26 1719
[13] Smith W, Yong C W and Rodger P M2002 Mol. Simu. 28 385
[14] Humphrey W, Danke A and Schulten K1996 J. Mol. Graph. 14 33
[15] Bergman D L, Laaksonen L and Laaksonen A1997 J. Mol. Graph. 15 301
[16] Zhang J, Fuller J and An Q2021 J. Phys. Chem. B 125 8876
[17] Patel A B and Sheng H2020 Phys Rev. B 102 064101
[18] Lynes O, Austin J and Kerridge A2019 Phys. Chem. Chem. Phys. 21 13809
[19] Harrison W A 1966 Pseudopotential in Theory of Metals (New York: Benjamin)
[20] Harrison W A and Wills J M1982 Phys. Rev. B 25 5007
[21] Bhatt N K 2007 Thermodynamic properties of some metals at high temperatures (PhD Thesis, Sardar Patel University)
[22] Patel A B, Bhatt N K, Thakore B Y, Vyas P R and Jani A R2014 Phys. Chem. Liq. 52 471
[23] Patel A B, Bhatt N K, Thakore B Y, Vyas P R and Jani A R2014 Mol. Phys. 112 2000
[24] Patel A B, Bhatt N K, Thakore B Y Vyas P R and Jani A R2014 Eur. Phys. J. B 87 39
[25] Joshi R H, Satikunvar D D, Bhatt N K, Thakore B Y and Jani A R2016 Adv. Material. Res. 1141 24
[26] Thakor P B, Gajjar P N and Jani A R2006 Commun. Theor. Phys. 46 337
[27] Thakor P B, Gajjar P N and Jani A R2002 J. Phys. Condens. Matt. 5 493
[28] Bhatia K G, Bhatt N K, Vyas P R and Gohel V B2015 AIP Conf. Proc. 1665 110014
[29] Baria J K2003 Chin. Phys. Lett. 20 894
[30] Rosengren A, Ebbsjo I and Johansson B1975 Phys. Rev. B 12 1337
[31] Moriarty J A, Benedict L X, Glosli J N, Hood R Q, Orlikowski D A, Patel M V, Söderlind P, Streitz F H, Tang M and Yang L H2006 J. Mater. Res. 21 563
[32] Moriarty J A, Belak J F, Rudd R E, Söderlind P, Streitz F H and Yang L H2002 J. Phys. Condens. Matt. 14 2825
[33] Moriarty J A and Widom M1997 Phys. Rev. B 56 7905
[34] Moriarty J A1970 Phys. Rev. B 1 1363
[35] Moriarty J A1972 Phys. Rev. B 5 2066
[36] Moriarty J A1972 Phys. Rev. B 6 1239
[37] Moriarty J A1990 Phys. Rev. B 42 1609
[38] Satikunvar D D, Bhatt N K and Thakore B Y2021 J. Appl. Phys. 129 035107
[39] Stassis C, Loong C K, Theisen C and Nicklow R M1982 Phys. Rev. B 26 4106
[40] http://sites.google.com/site/eampotentials/Yb
[41] Bhatt N K, Thakore B Y, Vyas P R and Jani A R2010 Int. J. Thermophys. 31 2159
[42] Bhatt N K, Thakore B Y, Vyas P R and Jani A R2010 Phys. B 405 3492
[43] Lindemann F A 1910 Z. Phys. 11 609
[44] Gilvary J J1956 Phys. Rev. 102 308
[45] Lawson A C2009 Philo. Manga. 89 1757
[46] Vopson M M, Rogers N and Hepburn I2020 Solid State Commun. 318 113977
[47] Wallace D C1991 Proceedings: Mathematical and Physical Sciences 433 615
[48] Joshi R H, Bhatt N K, Thakore B Y, Vyas P R and Jani A R2018 Comput. Condens. Matter 15 79
[49] Joshi R H, Thakore B Y, Vyas P R, Jani A R and Bhatt N K2017 Chin. Phys. B 26 116502
[50] Baria J K and Jani A R2010 Physica B 405 2065
[51] Baria J K, Gajjar P N and Jani A R 2002 Ind. J. Pure Appl. Phys. 40 714
[52] Onwuagba B N1987 Phys. Status. Solidi. B 141 105
[53] Ichimaru S and Utsumi K1981 Phys. Rev. B 24 7385
[54] Vora A M 2012 Bulg. J. Phys. 39 215
[55] Lai S K, Akinlade O and Tosi M P1990 Phys. Rev. A 41 5482
[56] Akinlade O, Lai S K and Tosi M P1990 Phys. B 167 61
[57] Lai S K1985 Phys. Rev. A 31 3886
[58] Palmer R G and Weeks J D1973 J. Chem. Phys. 58 4171
[59] Frenkel D Luijin F and Binder P M1992 Eur. Phys. Lett. 20 7
[60] Tankeshwar K, Singla B and Pathak K N1991 J. Phys. Condens. Matt. 3 3173
[61] Waseda Y 1980 The Structure of Non-Crystalline Materials (MacGraw: New York)
[62] Khusnutdinoff R M, Galimzyanov B N and Mokshin A V2018 J. Expert. Theor. Phys. 126 83
[63] Wallace D C1997 Phys. Rev. E 56 1981
[64] Wittenberg L J and DeWitt R 1973 Viscosity of Liquid Rare-Earth and Actinide Metals (In Proc. of the Second Int. Conf. on the Properties of Liquid Metals (London: Taylor))
[65] Postovalov V G, Romanov E P and Kondrat'ev V P2009 Phys. Met. Meta. 107 1
[66] Dariel M P Handbook on the Physics and Chemistry of Rare Earths (North-Holland Publishing Company: Netherlands)
[67] Khatun M N and Gosh R C2021 Phys. Lett. A 403 127385
[68] Battezzati L and Greer A L1989 Acta Metall. 37 1791
[69] Hirai M1993 Isij Inter. 33 251
[1] Numerical studies of isotopic selective photoionization of ytterbium in a three-step ionization scheme
Xiao-Yong Lu(卢肖勇) and Li-De Wang(王立德). Chin. Phys. B, 2023, 32(5): 053204.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[4] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[5] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[6] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[7] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[8] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[9] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[10] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[11] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[12] A 61-mJ, 1-kHz cryogenic Yb: YAG laser amplifier
Huijun He(何会军), Jun Yu(余军), Wentao Zhu(朱文涛), Qingdian Lin(林庆典), Xiaoyang Guo(郭晓杨), Cangtao Zhou(周沧涛), and Shuangchen Ruan(阮双琛). Chin. Phys. B, 2021, 30(12): 124206.
[13] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[14] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[15] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
No Suggested Reading articles found!