Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087302    DOI: 10.1088/1674-1056/acd0a7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coherent manipulation of a tunable hybrid qubit via microwave control

Si-Si Gu(顾思思)1,2, Bao-Chuan Wang(王保传)1,2, Hai-Ou Li(李海欧)1,2, Gang Cao(曹刚)1,2,†, and Guo-Ping Guo(郭国平)1,2,3
1. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2. CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3. Origin Quantum Computing Company Limited, Hefei 230026, China
Abstract  Hybrid qubits enable the hybridization of charge and spin degrees of freedom, which provides a way to realize both a relatively long coherence time and rapid qubit manipulation. Here, we use microwave driving to demonstrate the coherent operation of a tunable hybrid qubit, including X-rotation, Z-rotation, and rotation around an arbitrary axis in the X-Y panel of the Bloch sphere. Moreover, the coherence properties of the qubit and its tunability are studied. The measured coherence time of the X-rotation reaches ~ 14.3 ns. While for the Z-rotation, the maximum decoherence time is ~ 5.8 ns due to the larger sensitivity to noise. By employing the Hahn echo sequence to mitigate the influence of the low-frequency noise, we have improved the qubit coherence time from ~ 5.8 ns to ~ 15.0 ns. Our results contribute to a further understanding of the hybrid qubit and a step towards achieving high-fidelity qubit gates in the hybrid qubit.
Keywords:  semiconductor quantum dot      hybrid qubit      qubit operation      microwave control  
Received:  23 March 2023      Revised:  25 April 2023      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.92265113, 12074368, and 12034018) and the USTC Tang Scholarship.

Cite this article: 

Si-Si Gu(顾思思), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) Coherent manipulation of a tunable hybrid qubit via microwave control 2023 Chin. Phys. B 32 087302

[1] Zhang X, Li H O, Wang K, Cao G, Xiao M and Guo G P 2018 Chin. Phys. B 27 020305
[2] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 Natl. Sci. Rev. 6 32
[3] Wang K, Li H O, Xiao M, Cao G and Guo G P 2018 Chin. Phys. B 27 090308
[4] Chatterjee A, Stevenson P, De Franceschi S, Morello A, de Leon N P and Kuemmeth F 2021 Nat. Rev. Phys. 3 157
[5] Stano P and Loss D 2022 Nat. Rev. Phys. 4 672
[6] Xu Y Q, Gu S S, Lin T, Wang B C, Li H O, Cao G and Guo G P 2023 Sci. China Phys. Mech. 66 237301
[7] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[8] Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol. 9 981
[9] Kawakami E, Scarlino P, Ward D R, Braakman F R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2014 Nat. Nanotechnol. 9 666
[10] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol. 13 102
[11] Petta J R, Johnson A C, Marcus C M, Hanson M P and Gossard A C 2004 Phys. Rev. Lett. 93 186802
[12] Petersson K D, Petta J R, Lu H and Gossard A C 2010 Phys. Rev. Lett. 105 246804
[13] Dovzhenko Y, Stehlik J, Petersson K D, Petta J R, Lu H and Gossard A C 2011 Phys. Rev. B 84 161302
[14] Cao G, Li H O, Tu T, Wang L, Zhou C, Xiao M, Guo G C, Jiang H W and Guo G P 2013 Nat. Commun. 4 1401
[15] Shi Z, Simmons C B, Ward D R, Prance J R, Mohr R T, Koh T S, Gamble J K, Wu X, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2013 Phys. Rev. B 88 075416
[16] Kim D, Ward D R, Simmons C B, Gamble J K, Blume-Kohout R, Nielsen E, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2015 Nat. Nanotechnol. 10 243
[17] Li H O, Cao G, Yu G D, Xiao M, Guo G C, Jiang H W and Guo G P 2015 Nat. Commun. 6 7681
[18] Shi Z, Simmons C B, Prance J R, Gamble J K, Koh T S, Shim Y P, Hu X, Savage D E, Lagally M G, Eriksson M A, Friesen M and Coppersmith S N 2012 Phys. Rev. Lett. 108 140503
[19] Koh T S, Gamble J K, Friesen M, Eriksson M A and Coppersmith S N 2012 Phys. Rev. Lett. 109 250503
[20] Shi Z, Simmons C B, Ward D R, Prance J R, Wu X, Koh T S, Gamble J K, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2014 Nat. Commun. 5 3020
[21] Kim D, Shi Z, Simmons C B, Ward D R, Prance J R, Koh T S, Gamble J K, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2014 Nature 511 70
[22] Kim D, Ward D R, Simmons C B, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2015 NPJ Quantum Inf. 1 15004
[23] Wong C H 2016 Phys. Rev. B 93 035409
[24] Cao G, Li H O, Yu G D, Wang B C, Chen B B, Song X X, Xiao M, Guo G C, Jiang H W, Hu X and Guo G P 2016 Phys. Rev. Lett. 116 086801
[25] Wang B C, Cao G, Li H O, Xiao M, Guo G C, Hu X, Jiang H W and Guo G P 2017 Phys. Rev. Appl. 8 064035
[26] Thorgrimsson B, Kim D, Yang Y C, Smith L W, Simmons C B, Ward D R, Foote R H, Corrigan J, Savage D E, Lagally M G, Friesen M, Coppersmith S N and Eriksson M A 2017 NPJ Quantum Inf. 3 32
[27] Frees A, Mehl S, Gamble J K, Friesen M and Coppersmith S N 2019 NPJ Quantum Inf. 5 73
[28] Yang Y C, Coppersmith S N and Friesen M 2020 Phys. Rev. A 101 012338
[29] Jang W, Cho M K, Jang H, Kim J, Park J, Kim G, Kang B, Jung H, Umansky V and Kim D 2021 Nano Lett. 21 4999
[30] Yang Y C, Coppersmith S N and Friesen M 2019 Phys. Rev. A 100 022337
[31] DiCarlo L, Lynch H J, Johnson A C, Childress L I, Crockett K, Marcus C M, Hanson M P and Gossard A C 2004 Phys. Rev. Lett. 92 226801
[32] Chen M B, Jiang S L, Wang N, Wang B C, Lin T, Gu S S, Li H O, Cao G and Guo G P 2021 Phys. Rev. Appl. 15 044045
[33] Dial O E, Shulman M D, Harvey S P, Bluhm H, Umansky V and Yacoby A 2013 Phys. Rev. Lett. 110 146804
[34] Ito T, Otsuka T, Nakajima T, Delbecq M R, Amaha S, Yoneda J, Takeda K, Noiri A, Allison G, Ludwig A, Wieck A D and Tarucha S 2018 Appl. Phys. Lett. 113 093102
[35] Huang Z, Mundada P S, Gyenis A, Schuster D I, Houck A A and Koch J 2021 Phys. Rev. Appl. 15 034065
[36] Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 Rev. Mod. Phys. 86 361
[37] Koppens F H L, Nowack K C and Vandersypen L M K 2008 Phys. Rev. Lett. 100 236802
[38] Vandersypen L M K and Chuang I L 2005 Rev. Mod. Phys. 76 1037
[39] Alvarez G A, Ajoy A, Peng X and Suter D 2010 Phys. Rev. A 82 042306
[40] Ferraro E, Fanciulli M and De Michielis M 2018 Adv. Quantum Technol. 1 1800040
[41] Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V and Yacoby A 2011 Nat. Phys. 7 109
[42] Malinowski F K, Martins F, Nissen P D, Barnes E, Cywiński L, Rudner M S, Fallahi S, Gardner G C, Manfra M J, Marcus C M and Kuemmeth F 2017 Nat. Nanotechnol. 12 16
[1] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[2] Pure spin-current diode based on interacting quantum dot tunneling junction
Zhengzhong Zhang(张正中), Min Yu(余敏), Rui Bo(薄锐), Chao Wang(王超), and Hao Liu(刘昊). Chin. Phys. B, 2021, 30(11): 117305.
[3] Spin manipulation in semiconductor quantum dots qubit
Ke Wang(王柯), Hai-Ou Li(李海欧), Ming Xiao(肖明), Gang Cao(曹刚), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(9): 090308.
[4] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[5] Phase transition and charge transport through a triple dot device beyond the Kondo regime
Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东). Chin. Phys. B, 2018, 27(10): 108503.
[6] Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition
Yan-Chao She(佘彦超), Ting-Ting Luo(罗婷婷), Wei-Xi Zhang(张蔚曦),Mao-Wu Ran(冉茂武), Deng-Long Wang(王登龙). Chin. Phys. B, 2016, 25(1): 014202.
[7] Modification of the spontaneous emission of quantum dots near the surface of a three-dimensional colloidal photonic crystal
Liu Zheng-Qi(刘正奇), Feng Tian-Hua(冯天华), Dai Qiao-Feng(戴峭峰), Wu Li-Jun(吴立军), Lan Sheng(兰胜), Ding Cai-Rong(丁才蓉), Wang He-Zhou(汪河洲), and Gopal Achanta Venu. Chin. Phys. B, 2010, 19(11): 114210.
[8] Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots
Ma Hong(马红), Ma Guo-Hong(马国宏), Wang Wen-Jun(王文军), Gao Xue-Xi(高学喜), and Ma Hong-Liang(马洪良). Chin. Phys. B, 2008, 17(4): 1280-1285.
[9] Preparation of arbitrary n-particle d-dimensional superposition states using only single qubit operations and CNOT gates
Wang Yan-Hui (王艳辉), Fang Mao-Fa (方卯发). Chin. Phys. B, 2004, 13(10): 1644-1648.
No Suggested Reading articles found!