CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Extremely fast vortex dynamics in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrip |
A B Yu(于奥博)1,2,3, C T Lin(林成天)4, X F Zhang(张孝富)1,2,3,†, and L X You(尤立星)1,2,3,‡ |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany |
|
|
Abstract The maximum velocity of a mobile vortex in movement is generally limited by the phenomenon of flux-flow instability (FFI), which necessitates weak vortex pinning and fast heat removal from non-equilibrium electrons. We here demonstrate exfoliations and nano-fabrications of Bi2Sr2Ca2Cu3O10+δ crystalline nanostrips, which possess a rather weak pinning volume of vortices, relatively low resistivity, and large normal electron diffusion coefficient. The deduced vortex velocity in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrips can be up to 300 km/s near the superconducting transition temperature, well above the speed of sound. The observed vortex velocity is an order of magnitude faster than that of conventional superconducting systems, representing a perfect platform for exploration of ultra-fast vortex matter and a good candidate for fabrications of superconducting nanowire single photon detectors or superconducting THz modulator.
|
Received: 15 November 2022
Revised: 04 January 2023
Accepted manuscript online: 18 January 2023
|
PACS:
|
74.72.-h
|
(Cuprate superconductors)
|
|
47.32.cd
|
(Vortex stability and breakdown)
|
|
Fund: This study was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304000), the National Natural Science Foundation of China (Grant Nos. 61971408 and 61827823), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), Shanghai Rising-Star Program (Grant No. 20QA1410900), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant Nos. 2020241 and 2021230), and the Natural Science Foundation of Shanghai (Grant No. 19ZR1467400). The experimental measurements were supported by the Superconducting Electronics Facility (SELF) of Shanghai Institute of Microsystem and Information Technology. |
Corresponding Authors:
X F Zhang, L X You
E-mail: zhangxf@mail.sim.ac.cn;lxyou@mail.sim.ac.cn
|
Cite this article:
A B Yu(于奥博), C T Lin(林成天), X F Zhang(张孝富), and L X You(尤立星) Extremely fast vortex dynamics in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrip 2023 Chin. Phys. B 32 067402
|
[1] Rouco V, Navau C, Del-Valle N, et al. 2019 Nano Lett. 19 4174 [2] Veshchunov I S, Magrini W, Mironov S V, et al.2016 Nat. Commun. 7 12801 [3] Kremen A, Wissberg S, Haham N, et al. 2016 Nano Lett. 16 1626 [4] Lara A, Aliev F G, Moshchalkov V V, et al. 2017 Phys. Rev. Appl. 8 034027 [5] Grimaldi G, Leo A, Sabatino P, et al. 2015 Phys. Rev. B 92 024513 [6] Dobrovolskiy O V, Vodolazov D Y, Porrati F, et al.2020 Nat. Commun. 11 3291 [7] Embon L, Anahory Y, Jelic Z L, et al.2017 Nat. Commun. 8 85 [8] Zotova A N and Vodolazov D Y 2012 Phys. Rev. B 85 024509 [9] Vodolazov D Y, Korneeva Y P, Semenov A V, et al. 2015 Phys. Rev. B 92 104503 [10] Vodolazov D Y 2017 Phys. Rev. Appl. 7 034014 [11] Bulaevskii L N, Graf M J and Kogan V G 2012 Phys. Rev. B 85 014505 [12] Sarreshtedari F, Hosseini M, Chalabi H R, et al. 2009 IEEE Trans. Appl. Supercond. 19 3653 [13] Vodolazov D Y and Peeters F M 2007 Phys. Rev. B 76 014521 [14] Gurevich A and Ciovati G 2008 Phys. Rev. B 77 104501 [15] Kogan V G and Prozorov R 2020 Phys. Rev. B 102 024506 [16] Pathirana W and Gurevich A 2020 Phys. Rev. B 101 064504 [17] Kogan V G and Nakagawa N 2021 Phys. Rev. B 103 134511 [18] Pathirana W and Gurevich A 2021 Phys. Rev. B 103 184518 [19] Vodolazov D Y 2014 Phys. Rev. B 90 054515 [20] Blatter G, Feigel'man M V, Geshkenbein V B, et al. 1994 Rev. Mod. Phys. 66 1125 [21] Thomann A U, Geshkenbein V B and Blatter G 2012 Phys. Rev. Lett. 108 217001 [22] Larkin A I and Ovchinnikov Y N 1986 Nonequilibrium Superconductivity (North-Holland: Elsevier) p. 711 [23] Bezuglyj A I and Shklovskij V A1992 Physica C 202 234 [24] Vodolazov D Y. 2019 Supercond. Sci. Technol. 32 115013 [25] Dobrovolskiy O V, Gonzalez-Ruano C, Lara A, et al.2020 Commun. Phys. 3 64 [26] Leo A, Nigro A and Grimaldi G 2020 Low Temp. Phys. 46 375 [27] Liu Z, Luo B, Zhang L, et al. 2021 Supercond. Sci. Technol. 34 125014 [28] Hofer J A and Haberkorn N 2021 Thin Solid Films 730 138690 [29] Cirillo C, Granata V, Spuri A, et al. 2021 Phys. Rev. Mater. 5 085004 [30] Lin S Z, Ayala-Valenzuela O, McDonald R D, et al. 2013 Phys. Rev. B 87 184507 [31] Xiao Z L and Ziemann P 1996 Phys. Rev. B 53 15265 [32] Xiao Z L, Voss-de Haan P, Jakob G, et al. 1998 Phys. Rev. B 57 R736 [33] Budinska B, Aichner B, Vodolazov D Y, et al. 2022 Phys. Rev. Appl. 17 034072 [34] Golovchanskiy I A, Abramov N N, Stolyarov V S, et al. 2018 Adv. Funct. Mater. 28 1802375 [35] Dobrovolskiy O V, Sachser R, Bracher T, et al. 2019 Nat. Phys. 15 477 [36] Yu A B, Huang Z, Peng W, et al. 2022 Appl. Phys. Lett. 120 072601 [37] Liang B, Bernhard C, Wolf T, et al. 2004 Supercond. Sci. Technol. 17 731 [38] Lin C T and Liang B 2002 New Trends in Superconductivity (Berlin: Springer) pp. 19-28 [39] Yu Y, Ma L, Cai P, et al. 2019 Nature 575 156 [40] Zhao S Y F, Poccia N, Cui X, et al.2021 arXiv:2108.13455 [cond-mat.supr-con] [41] Wang T, Yu A, Liu Y, et al. 2022 Phys. Rev. B 106 104509 [42] Zhang X, Engel A, Wang Q, et al. 2016 Phys. Rev. B 94 174509 [43] Helfand E and Werthamer N R 1964 Phys. Rev. Lett. 13 686 [44] Zhang L, You L, Peng W, et al.2020 Physica C 579 1353773 [45] Larkin A I and Ovchinnikov Y U N1975 Sov. Phys. JETP 41 960 [46] Doettinger S G, Huebener R P and Kuhle A1995 Physica C 251 285 [47] Hunt C R, Nicoletti D, Kaiser S, et al. 2016 Phys. Rev. B 94 224303 [48] Charaev I, Bandurin D A, Bollinger A T, et al.2023 Nat. Nanotechnol. 18 343 [49] Merino R L, Seifert P, Retamal J D, et al.2022 arXiv:2208.05044 [cond-mat.supr-con] |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|