Extremely fast vortex dynamics in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrip
A B Yu(于奥博)1,2,3, C T Lin(林成天)4, X F Zhang(张孝富)1,2,3,†, and L X You(尤立星)1,2,3,‡
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
Abstract The maximum velocity of a mobile vortex in movement is generally limited by the phenomenon of flux-flow instability (FFI), which necessitates weak vortex pinning and fast heat removal from non-equilibrium electrons. We here demonstrate exfoliations and nano-fabrications of Bi2Sr2Ca2Cu3O10+δ crystalline nanostrips, which possess a rather weak pinning volume of vortices, relatively low resistivity, and large normal electron diffusion coefficient. The deduced vortex velocity in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrips can be up to 300 km/s near the superconducting transition temperature, well above the speed of sound. The observed vortex velocity is an order of magnitude faster than that of conventional superconducting systems, representing a perfect platform for exploration of ultra-fast vortex matter and a good candidate for fabrications of superconducting nanowire single photon detectors or superconducting THz modulator.
Fund: This study was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304000), the National Natural Science Foundation of China (Grant Nos. 61971408 and 61827823), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), Shanghai Rising-Star Program (Grant No. 20QA1410900), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant Nos. 2020241 and 2021230), and the Natural Science Foundation of Shanghai (Grant No. 19ZR1467400). The experimental measurements were supported by the Superconducting Electronics Facility (SELF) of Shanghai Institute of Microsystem and Information Technology.
Corresponding Authors:
X F Zhang, L X You
E-mail: zhangxf@mail.sim.ac.cn;lxyou@mail.sim.ac.cn
Cite this article:
A B Yu(于奥博), C T Lin(林成天), X F Zhang(张孝富), and L X You(尤立星) Extremely fast vortex dynamics in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrip 2023 Chin. Phys. B 32 067402
[1] Rouco V, Navau C, Del-Valle N, et al. 2019 Nano Lett.19 4174 [2] Veshchunov I S, Magrini W, Mironov S V, et al.2016 Nat. Commun.7 12801 [3] Kremen A, Wissberg S, Haham N, et al. 2016 Nano Lett.16 1626 [4] Lara A, Aliev F G, Moshchalkov V V, et al. 2017 Phys. Rev. Appl.8 034027 [5] Grimaldi G, Leo A, Sabatino P, et al. 2015 Phys. Rev. B92 024513 [6] Dobrovolskiy O V, Vodolazov D Y, Porrati F, et al.2020 Nat. Commun.11 3291 [7] Embon L, Anahory Y, Jelic Z L, et al.2017 Nat. Commun.8 85 [8] Zotova A N and Vodolazov D Y 2012 Phys. Rev. B85 024509 [9] Vodolazov D Y, Korneeva Y P, Semenov A V, et al. 2015 Phys. Rev. B92 104503 [10] Vodolazov D Y 2017 Phys. Rev. Appl.7 034014 [11] Bulaevskii L N, Graf M J and Kogan V G 2012 Phys. Rev. B85 014505 [12] Sarreshtedari F, Hosseini M, Chalabi H R, et al. 2009 IEEE Trans. Appl. Supercond.19 3653 [13] Vodolazov D Y and Peeters F M 2007 Phys. Rev. B76 014521 [14] Gurevich A and Ciovati G 2008 Phys. Rev. B77 104501 [15] Kogan V G and Prozorov R 2020 Phys. Rev. B102 024506 [16] Pathirana W and Gurevich A 2020 Phys. Rev. B101 064504 [17] Kogan V G and Nakagawa N 2021 Phys. Rev. B103 134511 [18] Pathirana W and Gurevich A 2021 Phys. Rev. B103 184518 [19] Vodolazov D Y 2014 Phys. Rev. B90 054515 [20] Blatter G, Feigel'man M V, Geshkenbein V B, et al. 1994 Rev. Mod. Phys.66 1125 [21] Thomann A U, Geshkenbein V B and Blatter G 2012 Phys. Rev. Lett.108 217001 [22] Larkin A I and Ovchinnikov Y N 1986 Nonequilibrium Superconductivity (North-Holland: Elsevier) p. 711 [23] Bezuglyj A I and Shklovskij V A1992 Physica C202 234 [24] Vodolazov D Y. 2019 Supercond. Sci. Technol.32 115013 [25] Dobrovolskiy O V, Gonzalez-Ruano C, Lara A, et al.2020 Commun. Phys.3 64 [26] Leo A, Nigro A and Grimaldi G 2020 Low Temp. Phys.46 375 [27] Liu Z, Luo B, Zhang L, et al. 2021 Supercond. Sci. Technol.34 125014 [28] Hofer J A and Haberkorn N 2021 Thin Solid Films730 138690 [29] Cirillo C, Granata V, Spuri A, et al. 2021 Phys. Rev. Mater.5 085004 [30] Lin S Z, Ayala-Valenzuela O, McDonald R D, et al. 2013 Phys. Rev. B87 184507 [31] Xiao Z L and Ziemann P 1996 Phys. Rev. B53 15265 [32] Xiao Z L, Voss-de Haan P, Jakob G, et al. 1998 Phys. Rev. B57 R736 [33] Budinska B, Aichner B, Vodolazov D Y, et al. 2022 Phys. Rev. Appl.17 034072 [34] Golovchanskiy I A, Abramov N N, Stolyarov V S, et al. 2018 Adv. Funct. Mater.28 1802375 [35] Dobrovolskiy O V, Sachser R, Bracher T, et al. 2019 Nat. Phys.15 477 [36] Yu A B, Huang Z, Peng W, et al. 2022 Appl. Phys. Lett.120 072601 [37] Liang B, Bernhard C, Wolf T, et al. 2004 Supercond. Sci. Technol.17 731 [38] Lin C T and Liang B 2002 New Trends in Superconductivity (Berlin: Springer) pp. 19-28 [39] Yu Y, Ma L, Cai P, et al. 2019 Nature575 156 [40] Zhao S Y F, Poccia N, Cui X, et al.2021 arXiv:2108.13455 [cond-mat.supr-con] [41] Wang T, Yu A, Liu Y, et al. 2022 Phys. Rev. B106 104509 [42] Zhang X, Engel A, Wang Q, et al. 2016 Phys. Rev. B94 174509 [43] Helfand E and Werthamer N R 1964 Phys. Rev. Lett.13 686 [44] Zhang L, You L, Peng W, et al.2020 Physica C579 1353773 [45] Larkin A I and Ovchinnikov Y U N1975 Sov. Phys. JETP41 960 [46] Doettinger S G, Huebener R P and Kuhle A1995 Physica C251 285 [47] Hunt C R, Nicoletti D, Kaiser S, et al. 2016 Phys. Rev. B94 224303 [48] Charaev I, Bandurin D A, Bollinger A T, et al.2023 Nat. Nanotechnol.18 343 [49] Merino R L, Seifert P, Retamal J D, et al.2022 arXiv:2208.05044 [cond-mat.supr-con]
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.