Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067402    DOI: 10.1088/1674-1056/acb425
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Extremely fast vortex dynamics in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrip

A B Yu(于奥博)1,2,3, C T Lin(林成天)4, X F Zhang(张孝富)1,2,3,†, and L X You(尤立星)1,2,3,‡
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
Abstract  The maximum velocity of a mobile vortex in movement is generally limited by the phenomenon of flux-flow instability (FFI), which necessitates weak vortex pinning and fast heat removal from non-equilibrium electrons. We here demonstrate exfoliations and nano-fabrications of Bi2Sr2Ca2Cu3O10+δ crystalline nanostrips, which possess a rather weak pinning volume of vortices, relatively low resistivity, and large normal electron diffusion coefficient. The deduced vortex velocity in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrips can be up to 300 km/s near the superconducting transition temperature, well above the speed of sound. The observed vortex velocity is an order of magnitude faster than that of conventional superconducting systems, representing a perfect platform for exploration of ultra-fast vortex matter and a good candidate for fabrications of superconducting nanowire single photon detectors or superconducting THz modulator.
Keywords:  Bi2Sr2Ca2Cu3O10+δ (Bi2223)      vortices dynamics      ultra thin single crystal      nanowire  
Received:  15 November 2022      Revised:  04 January 2023      Accepted manuscript online:  18 January 2023
PACS:  74.72.-h (Cuprate superconductors)  
  47.32.cd (Vortex stability and breakdown)  
Fund: This study was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304000), the National Natural Science Foundation of China (Grant Nos. 61971408 and 61827823), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), Shanghai Rising-Star Program (Grant No. 20QA1410900), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant Nos. 2020241 and 2021230), and the Natural Science Foundation of Shanghai (Grant No. 19ZR1467400). The experimental measurements were supported by the Superconducting Electronics Facility (SELF) of Shanghai Institute of Microsystem and Information Technology.
Corresponding Authors:  X F Zhang, L X You     E-mail:  zhangxf@mail.sim.ac.cn;lxyou@mail.sim.ac.cn

Cite this article: 

A B Yu(于奥博), C T Lin(林成天), X F Zhang(张孝富), and L X You(尤立星) Extremely fast vortex dynamics in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrip 2023 Chin. Phys. B 32 067402

[1] Rouco V, Navau C, Del-Valle N, et al. 2019 Nano Lett. 19 4174
[2] Veshchunov I S, Magrini W, Mironov S V, et al.2016 Nat. Commun. 7 12801
[3] Kremen A, Wissberg S, Haham N, et al. 2016 Nano Lett. 16 1626
[4] Lara A, Aliev F G, Moshchalkov V V, et al. 2017 Phys. Rev. Appl. 8 034027
[5] Grimaldi G, Leo A, Sabatino P, et al. 2015 Phys. Rev. B 92 024513
[6] Dobrovolskiy O V, Vodolazov D Y, Porrati F, et al.2020 Nat. Commun. 11 3291
[7] Embon L, Anahory Y, Jelic Z L, et al.2017 Nat. Commun. 8 85
[8] Zotova A N and Vodolazov D Y 2012 Phys. Rev. B 85 024509
[9] Vodolazov D Y, Korneeva Y P, Semenov A V, et al. 2015 Phys. Rev. B 92 104503
[10] Vodolazov D Y 2017 Phys. Rev. Appl. 7 034014
[11] Bulaevskii L N, Graf M J and Kogan V G 2012 Phys. Rev. B 85 014505
[12] Sarreshtedari F, Hosseini M, Chalabi H R, et al. 2009 IEEE Trans. Appl. Supercond. 19 3653
[13] Vodolazov D Y and Peeters F M 2007 Phys. Rev. B 76 014521
[14] Gurevich A and Ciovati G 2008 Phys. Rev. B 77 104501
[15] Kogan V G and Prozorov R 2020 Phys. Rev. B 102 024506
[16] Pathirana W and Gurevich A 2020 Phys. Rev. B 101 064504
[17] Kogan V G and Nakagawa N 2021 Phys. Rev. B 103 134511
[18] Pathirana W and Gurevich A 2021 Phys. Rev. B 103 184518
[19] Vodolazov D Y 2014 Phys. Rev. B 90 054515
[20] Blatter G, Feigel'man M V, Geshkenbein V B, et al. 1994 Rev. Mod. Phys. 66 1125
[21] Thomann A U, Geshkenbein V B and Blatter G 2012 Phys. Rev. Lett. 108 217001
[22] Larkin A I and Ovchinnikov Y N 1986 Nonequilibrium Superconductivity (North-Holland: Elsevier) p. 711
[23] Bezuglyj A I and Shklovskij V A1992 Physica C 202 234
[24] Vodolazov D Y. 2019 Supercond. Sci. Technol. 32 115013
[25] Dobrovolskiy O V, Gonzalez-Ruano C, Lara A, et al.2020 Commun. Phys. 3 64
[26] Leo A, Nigro A and Grimaldi G 2020 Low Temp. Phys. 46 375
[27] Liu Z, Luo B, Zhang L, et al. 2021 Supercond. Sci. Technol. 34 125014
[28] Hofer J A and Haberkorn N 2021 Thin Solid Films 730 138690
[29] Cirillo C, Granata V, Spuri A, et al. 2021 Phys. Rev. Mater. 5 085004
[30] Lin S Z, Ayala-Valenzuela O, McDonald R D, et al. 2013 Phys. Rev. B 87 184507
[31] Xiao Z L and Ziemann P 1996 Phys. Rev. B 53 15265
[32] Xiao Z L, Voss-de Haan P, Jakob G, et al. 1998 Phys. Rev. B 57 R736
[33] Budinska B, Aichner B, Vodolazov D Y, et al. 2022 Phys. Rev. Appl. 17 034072
[34] Golovchanskiy I A, Abramov N N, Stolyarov V S, et al. 2018 Adv. Funct. Mater. 28 1802375
[35] Dobrovolskiy O V, Sachser R, Bracher T, et al. 2019 Nat. Phys. 15 477
[36] Yu A B, Huang Z, Peng W, et al. 2022 Appl. Phys. Lett. 120 072601
[37] Liang B, Bernhard C, Wolf T, et al. 2004 Supercond. Sci. Technol. 17 731
[38] Lin C T and Liang B 2002 New Trends in Superconductivity (Berlin: Springer) pp. 19-28
[39] Yu Y, Ma L, Cai P, et al. 2019 Nature 575 156
[40] Zhao S Y F, Poccia N, Cui X, et al.2021 arXiv:2108.13455 [cond-mat.supr-con]
[41] Wang T, Yu A, Liu Y, et al. 2022 Phys. Rev. B 106 104509
[42] Zhang X, Engel A, Wang Q, et al. 2016 Phys. Rev. B 94 174509
[43] Helfand E and Werthamer N R 1964 Phys. Rev. Lett. 13 686
[44] Zhang L, You L, Peng W, et al.2020 Physica C 579 1353773
[45] Larkin A I and Ovchinnikov Y U N1975 Sov. Phys. JETP 41 960
[46] Doettinger S G, Huebener R P and Kuhle A1995 Physica C 251 285
[47] Hunt C R, Nicoletti D, Kaiser S, et al. 2016 Phys. Rev. B 94 224303
[48] Charaev I, Bandurin D A, Bollinger A T, et al.2023 Nat. Nanotechnol. 18 343
[49] Merino R L, Seifert P, Retamal J D, et al.2022 arXiv:2208.05044 [cond-mat.supr-con]
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅), Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[3] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[4] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[5] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[6] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[7] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[8] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[9] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[10] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[11] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[12] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[13] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[14] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[15] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
No Suggested Reading articles found!