Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 046502    DOI: 10.1088/1674-1056/acb201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN

Chao Wu(吴超)1,4 and Chenhan Liu(刘晨晗)1,2,3,†
1 Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
2 Micro-and Nano-scale Thermal Measurement and Thermal Management Laboratory, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China;
3 Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems, Nanjing Normal University, Nanjing 210023, China;
4 Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
Abstract  Phonon bandgap typically has a significant effect on phonon-phonon scattering process. In this work, the effects of mass modified phonon bandgap in θ -phase TaN are systemically investigated by the means of first-principles calculations with linearized Boltzmann transport equation. Through detailed calculations, we find that phonon bandgap has a significant effect on three-phonon process while exhibits a much weaker effect on four-phonon process. The reason for the ultrahigh thermal conductivity of θ -phase TaN is the long lifetime of phonons including both three-phonon and four-phonon processes, which originates from the weak phonon anharmonicity and large phonon bandgap-induced small phonon-phonon scattering phase space. This work advances the understanding of phonon bandgap effects on phonon transport.
Keywords:  ultrahigh thermal conductivity      phonon-phonon scattering phase space      first-principles calculation      phonon bandgap  
Received:  16 November 2022      Revised:  06 January 2023      Accepted manuscript online:  11 January 2023
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  63.20.kg (Phonon-phonon interactions)  
  63.20.dk (First-principles theory)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52206092) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210565). Liu C was funded by the Department of Science and Technology of Jiangsu Province (Grant No. BK20220032), the Basic Science (Natural Science) Research Project of Higher Education Institutions of Jiangsu Province, China (Grant No. 21KJB470009), Nanjing Science and Technology Innovation Project for Overseas Students, the "Shuangchuang" Doctor Program of Jiangsu Province, China (Grant No. JSSCBS20210315), and the Open Research Fund of Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University (Grant No. KF202010). The authors thank the Scientific Computing Center of Nanjing Normal University and the Big Data Center of Southeast University for performing the numerical calculations presented in this paper.
Corresponding Authors:  Chenhan Liu     E-mail:  chenhanliu@njnu.edu.cn

Cite this article: 

Chao Wu(吴超) and Chenhan Liu(刘晨晗) Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN 2023 Chin. Phys. B 32 046502

[1] Kang J S, Li M, Wu H A, Nguyen H and Hu Y J 2018 Science 361 575
[2] Li S, Zheng Q Y, Lv Y C, Liu X Y, Wang X Q, Huang P S E Y, Cahill D G and Lv B 2018 Science 361 579
[3] Tian F, Song B, Chen X, Ravichandran N K, Lv Y C, Chen K, Sullivan S, Kim J, Zhou Y Y, Liu T H, Goni M, Ding Z W, Sun J Y, Gamage G A G U, Sun H R, Ziyaee H, Huyan S Y, Deng L Z, Zhou J S, Schmidt A J, Chen S, Chu C W, Huang P S E Y, Broido D, Shi L, Chen G and Ren Z F 2018 Science 361 582
[4] Slack G A 1973 J. Phys. Chem. Solids 34 321
[5] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[6] Balandin A A. 2011 Nat Mater. 10 569
[7] Wei L, Kuo P K, Thomas R L, Anthony T R and Banholzer W F 1993 Phys. Rev. Lett. 70 3764
[8] Onn D G, Witek A, Qiu Y Z, Anthony T R and Banholzer W F 1992 Phys. Rev. Lett. 68 2806
[9] Inyushkin A V, Taldenkov A N, Ralchenko V G, Bolshakov A P, Koliadin A V and Katrusha A N 2018 Phys. Rev. B 97 144305
[10] Lindsay L, Broido D A and Reinecke T L 2013 Phys. Rev. Lett. 111 025901
[11] Dames C. 2018 Science 361 549
[12] Liu C H, Chen Z H, Wu C, Qi J, Hao M L, Lu P and Chen Y F 2022 ACS Appl. Mater. Inter. 14 46716
[13] Vega-Flick A, Jung D, Yue S Y, Bowers J E and Liao B L 2019 Phys. Rev. Mater. 3 034603
[14] Yang R Q, Yue S Y, Quan Y J and Liao B L 2021 Phys. Rev. B 103 184302
[15] Liu C, Wu C, Song T, Zhao Y, Yang J, Lu P, Zhang G and Chen Y 2022 ACS Appl. Energy Mater. 5 15356
[16] Kundu A, Yang X L, Ma J L, Feng T L, Carrete J, Ruan X L, Madsen G K H and Li W 2021 Phys. Rev. Lett. 126 115901
[17] Feng T L and Ruan X L 2018 Phys. Rev. B. 97 045202
[18] Gu X K, Fan Z Y, Bao H and Zhao C Y 2019 Phys. Rev. B. 100 064306
[19] Liu C H, Lu P, Chen W Y, Zhao Y S and Chen Y F 2021 Phys. Chem. Chem. Phys. 23 26030
[20] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[21] Liu C, Lu P, Gu Z, Yang J and Chen Y 2020 J. Phys. Chem. C 124 26144
[22] Liu C, Mishra V, Chen Y and Dames C 2018 Adv. Theory Simul. 1 1800098
[23] Liu C, Chen Y and Dames C 2019 Phys. Rev. Appl. 11 044002
[24] Liu C, Lu P, Li D, Zhao Y and Hao M 2022 Mater. Today Nano 17 100165
[25] Liu C and Chen Y 2022 Sci. China Phys. Mech. 65 117009
[26] Bai S Y, Tang Z A, Huang Z X, Yu J and Wang J Q 2008 Chin. Phys. Lett. 25 593
[27] Li H L and Cao B Y 2019 Acta Phys. Sin. 68 200201 (in Chinese)
[28] Friedrich A, Winkler B, Bayarjargal L, Arellano E A J, Morgenroth W, Biehler J, Schroder F, Yan J Y and Clark S M 2010 J. Alloys Compd. 502 5
[29] Fitzgerel R K and Verhoek F H 1960 J. Chem. Educ. 37 545
[1] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principlesand machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红), Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[2] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!