Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 046801    DOI: 10.1088/1674-1056/ac8ea0

Study of metal-ceramic WC/Cu nano-wear behavior and strengthening mechanism

Min Zheng(郑敏)1, Jie Chen(陈杰)1, Zong-Xiao Zhu(朱宗孝)1,†, Ding-Feng Qu(曲定峰)1, Wei-Hua Chen(陈卫华)1, Zhuo Wu(吴卓)1, Lin-Jun Wang(王林军)1, and Xue-Zhong Ma(马学忠)2
1 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
2 School of Petroleum and Chemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  In view of the inherent poor tribological properties of copper, the reinforcement of copper matrix composites with WC particles presents a promising research area with significant industrial influence. Therefore, in the present study, a molecular dynamics approach is used to simulate the process of repeated friction of diamond grinding balls on WC/Cu composites, and the friction force, friction coefficient, abrasion depth, wear rate, abrasion morphology, von-Mises stress, internal defects, workpiece energy, and performance comparison of different layer thicknesses are systematically investigated in the multiple friction process. It is found that the fluctuation amplitude of friction force, friction coefficient, and abrasion depth are smaller and the fluctuation frequency is larger during the initial friction, whereas near the WC phase, there appears extreme values of the above parameters and the von-Mises stress is highly concentrated while the workpiece energy contonues to increase. In the case of the repeated friction, with the increase of friction times, the friction force, friction coefficient, and abrasion depth fluctuation amplitude increase, the fluctuation frequency decreases, the workpiece energy reaches an extreme value near the WC phase, and a large number of dislocations plug, therefore, the region is strengthened. As the distance between the grinding ball and the WC phase decreases, the more obvious the strengthening effect, the stronger the ability of workpiece to resist the wear will be.
Keywords:  molecular dynamics      repetitive friction      copper matrix composites      reinforcement  
Received:  24 May 2022      Revised:  24 August 2022      Accepted manuscript online:  02 September 2022
PACS: (Metals and alloys) (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  46.55.+d (Tribology and mechanical contacts)  
  81.05.Mh (Cermets, ceramic and refractory composites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52005236) and the Natural Science Foundation of Gansu Province, China (Grant No. 20JR5RA442).
Corresponding Authors:  Zong-Xiao Zhu     E-mail:

Cite this article: 

Min Zheng(郑敏), Jie Chen(陈杰), Zong-Xiao Zhu(朱宗孝), Ding-Feng Qu(曲定峰), Wei-Hua Chen(陈卫华), Zhuo Wu(吴卓), Lin-Jun Wang(王林军), and Xue-Zhong Ma(马学忠) Study of metal-ceramic WC/Cu nano-wear behavior and strengthening mechanism 2023 Chin. Phys. B 32 046801

[1] Zhai W Z, Bai L C, Zhou R H, Fan X L, Kang G Z, Liu Y and Zhou K 2021 Adv. Sci. 8 2003739
[2] Holmberg K and Erdemir A 2017 Friction 5 263
[3] Dang C, Liu H M, Feng S, Qu Y, Hu Q L and Jiang J C 2019 Mater. Res. Express 6 106312
[4] Wang C Z, Gan X P, Tao J M, Xie M, Yi J H and Liu Y C 2019 Nanotechnology 31 045701
[5] Xu X Z, Yi D, Wang Z C, Yu J C, Zhang Z H, Qiao R X, Sun Z H, Hu Z H, Gao P and Peng H L 2018 Adv. Mater. 30 1702944
[6] Arnaud C, Lecouturier F, Mesguich D, Ferreira N, Chevallier G, Estournés C, Weibel A and Laurent C 2016 Carbon 96 212
[7] Baig Z, Mamat O and Mustapha M 2018 Crit. Rev. Solid State Mater. Sci. 43 1
[8] Fan T X, Liu Y, Yang K M, Song J and Zhang D 2018 Acta Metall. Sin. 55 16
[9] Zheng M, Qu D F, Wei X C, Zhang Z, Zhu Z X, Wang L J and Chen W H 2022 Appl. Phys. A 128 1
[10] Tsakiris V, Enescu E, Radulian A, Lucaci M, Lungu M, Mocioi N, Leonat L, Cirstea D and Caramitu A 2016 International Symposium on Fundamentals of Electrical Engineering (ISFEE), 30 June-02 July Bucharest, Romania, p. 1-6
[11] Zhai H X and Huang Z 2004 Wear 257 414
[12] Aida H, Doi T, Takeda H, Katakura H, Kim S W, Koyama K, Yamazaki T and Uneda M 2012 Curr. Appl Phys. 12 S41
[13] Goel S, Kovalchenko A, Stukowski A and Cross G 2016 Acta Mater. 105 464
[14] Zhang L C and Tanaka H 1998 Tribol. Int. 31 425
[15] Shabani M, Paydar M H, Zamiri R, Goodarzi M and Moshksar M M 2016 J. Mater. Res. Technol. 5 5
[16] Wei K X, Zhou H R, Jia F L, Zhang K, Wei W, Chu F Q, Wang D D and Alexandrov I V 2021 Surf. Interfaces 24 101142
[17] Freschi M, Di Virgilio M, Zanardi G, Mariani M, Lecis N and Dotelli G 2021 Lubricants 9 53
[18] Li X H, Yan S J, Chen X, Hong Q H and Wang N 2020 J. Alloys Compd. 834 155182
[19] Chen L, Hou Z C, Liu Y F, Luan C, Zhu L and Li W Z 2020 Composites, Part A 138 106063
[20] Bahador A, Umeda J, Hamzah E, Yusof F, Li X C and Kondoh K 2020 Mater. Sci. Eng., A 772 138797
[21] Zhang C, Lu C, Pei L Q, Li J Q and Wang R 2020 Composites, Part B 182 107610
[22] Song H Y, Duan B B, Wang Y J, An M and Li Y L 2020 Mater. Chem. Phys. 253 123254
[23] Peng W X, Sun K, Abdullah R, Zhang M, Chen J and Shi J Q 2019 Appl. Surf. Sci. 487 22
[24] Feng Q, Song X Y, Xie H X, Wang H B, Liu X M and Yin F X 2017 Mater. Des. 120 193
[25] Zhu J D, Liu X, Zhou X D and Yang Q S 2021 Comput. Mater. Sci 188 110179
[26] Hosseini S V and Vahdati M 2012 Comput. Mater. Sci 65 29
[27] Xu F F, Fang F Z and Zhang X D 2018 Comput. Mater. Sci 143 133
[28] Zhu Z X, Peng B, Feng R C, Wang L J, Jiao S and Dong Y 2019 Sci. China Technol. Sci. 62 1916
[29] Li J, Fang Q H, Liu B and Liu Y W 2016 Appl. Surf. Sci. 384 419
[30] Swope W C, Andersen H C, Berens P H and Wilson K R 1982 J. Chem. Phys. 76 637
[31] Zhu Z X, Wang H, Qiang Z X, Jiao S, Wang L J, Zheng M, Zhu S Y, Cheng J and Yang J 2021 Coatings 11 896
[32] Fang Q H, Wang Q, Li J, Zeng X and Liu Y W 2017 RSC Adv. 7 42047
[33] Juslin N, Erhart P, Träskelin P, Nord J, Henriksson K O, Nordlund K, Salonen E and Albe K 2005 J. Appl. Phys. 98 123520
[34] Imran M, Hussain F, Rashid M and Ahmad S 2012 Chin. Phys. B 21 126802
[35] Yin Z H, Zhu P Z and Li B Z 2021 Tribol. Lett. 69 38
[36] Wei W, Chen L, Gong H R and Fan J L 2019 J. Phys.: Condens. Matter 31 305002
[37] Imran M, Hussain F, Rashid M and Ahmad S 2012 Chin. Phys. B 21 116201
[38] Zhang R, Kong L, Gong H and Liu B 2004 J. Phys.: Condens. Matter 16 5251
[39] Tersoff J 1989 Phys. Rev. B 39 5566
[40] Ye Y, Biswas R, Morris J, Bastawros A and Chandra A 2003 Nanotechnology 14 390
[41] Archard J 1953 J. Appl. Phys. 24 981
[42] Khosravi J, Givi M K B, Barmouz M and Rahi A 2014 Int. J. Adv. Manuf. Tech. 74 1087
[43] Doan D Q, Fang T H, Tran A S and Chen T H 2019 Comput. Mater. Sci 170 109162
[44] Stukowski A, Bulatov V V and Arsenlis A 2012 Modell. Simul. Mater. Sci. Eng. 20 085007
[45] Yin Z, Zhu P and Li B 2021 Tribol. Lett. 69 1
[46] Zhang Z B and Urbassek H M 2018 Comput. Mater. Sci 145 109
[47] Wang J P, Liang J W, Wen Z X, Yue Z F and Peng Y 2022 Mech. Mater. 104204
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!