AbstractAb initio molecular dynamics calculations have been carried out to search for the ground state structure of FeTi clusters and measure the thermal expansion of FeTi. The volume of FeTi clusters during thermal expansion is jointly determined by anharmonic interaction and magneto-volume effect. It has been found that FeTi, FeTi, FeTi, and Fe clusters can exhibit the remarkable magneto-volume effect with abnormal volume behaviors and magnetic moment behaviors during thermal expansion. A prerequisite for the magneto-volume effect of FeTi clusters during thermal expansion has been revealed and the magnitude of the magneto-volume is also approximately determined. Furthermore, the magneto-volume behaviors of FeTi clusters are qualitatively characterized by the energy contour map. Our results shed light on the mechanism of the magneto-volume effect in FeTi clusters during thermal expansion, which can guide the design of nanomaterials with zero expansion or even controllable expansion properties.
Received: 17 August 2022
Revised: 28 December 2022
Accepted manuscript online: 30 December 2022
PACS:
65.40.De
(Thermal expansion; thermomechanical effects)
Fund: We would like to acknowledge the support from the National Natural Science Foundation of China (Grant No. 52171038) as well as key R&D projects in Shandong Province (Grant No. 2021SFGC1001). This work is also supported by the Special Funding in the Project of the Taishan Scholar Construction Engineering and the program of Jinan Science and Technology Bureau (Grant No. 2020GXRC019) as well as new material demonstration platform construction project from Ministry of Industry and Information Technology of China (Grant No. 2020-370104-34-03-043952-01-11).
Corresponding Authors:
Hui Li
E-mail: lihuilmy@hotmail.com
Cite this article:
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉) Magneto-volume effect in FenTi13-n clusters during thermal expansion 2023 Chin. Phys. B 32 046501
[1] van Schilfgaarde M, Abrikosov I A and Johansson B 1999 Nature400 46 [2] Song Y Z, Shi N K, Deng S Q, Xing X R and Chen J 2021 Prog. Mater. Sci.121 100835 [3] Guillaume C E 1904 Nature71 134 [4] Moruzzi V L 1990 Phys. Rev. B41 6939 [5] Ekholm M and Abrikosov I A 2011 Phys. Rev. B84 104423 [6] Akai H and Dederichs P H 1993 Phys. Rev. B47 8739 [7] Abrikosov I A, Kissavos A E, Liot F, Alling B, Simak S I, Peil O and Ruban A V 2007 Phys. Rev. B76 014434 [8] Liot F and Abrikosov I A 2009 Phys. Rev. B79 014202 [9] Korenman V and Wyman B 1981 Phys. Rev. B24 5413 [10] Rao Z Y, Cakir A, Ozgun O, Ponge D, Raabe D, Li Z M and Acet M 2021 Phys. Rev. Mater.5 044406 [11] Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M and Shamoto S 2008 Phys. Rev. Lett.101 205901 [12] Iikubo S, Kodama K, Takenaka K, Takagi H and Shamoto S 2008 Phys. Rev. B77 020409 [13] Takenaka K and Takagi H 2005 Appl. Phys. Lett.87 261902 [14] Takenaka K, Ichigo M, Hamada T, Ozawa A, Shibayama T, Inagaki T and Asano K 2014 Sci. Technol. Adv. Mater.15 015009 [15] Cowley R A 1963 Adv. Phys.12 421 [16] Wallace D C 1965 Phys. Rev.139 A877 [17] Yokoyama T and Eguchi K 2013 Phys. Rev. Lett.110 075901 [18] Khmelevskyi S, Turek I and Mohn P 2003 Phys. Rev. Lett.91 037201 [19] Khmelevskyi S and Mohn P 2010 Phys. Rev. B82 134402 [20] Huang R, Liu Y, Fan W, Tan J, Xiao F, Qian L and Li L 2013 J. Am. Chem. Soc.135 11469 [21] Song Y, Sun Q, Yokoyama T, Zhu H, Li Q, Huang R, Ren Y, Huang Q, Xing X and Chen J 2020 J. Phys. Chem. Lett.11 1954 [22] Wang C, Chu L, Yao Q, Sun Y, Wu M, Ding L, Yan J, Na Y, Tang W, Li G, Huang Q and Lynn J W 2012 Phys. Rev. B85 220103 [23] Guo X G , Lin J C, Tong P, Wang M, Wu Y, Yang C, Song B, Lin S, Song W H and Sun Y P 2015 Appl. Phys. Lett.107 202406 [24] Song Y, Chen J, Liu X, Wang C, Zhang J, Liu H, Zhu H, Hu L, Lin K, Zhang S and Xing X 2018 J. Am. Chem. Soc.140 602 [25] Li B, Luo X H, Wang H, Ren W J, Yano S, Wang C W, Gardner J S, Liss K D, Miao P, Lee S H, Kamiyama T, Wu R Q, Kawakita Y and Zhang Z D 2016 Phys. Rev. B93 224405 [26] Li L F, Tong P, Zou Y M, Tong W, Jiang W B, Jiang Y, Zhang X K, Lin J C, Wang M, Yang C, Zhu X B, Song W H and Sun Y P 2018 Acta Mater.161 258 [27] Poteryaev A I, Skorikov N A, Anisimov V I and Korotin M A 2016 Phys. Rev. B93 205135 [28] Song Y, Sun Q, Xu M, Zhang J, Hao Y, Qiao Y, Zhang S, Huang Q, Xing X and Chen J 2020 Mater. Horizons7 275 [29] Fu C, Huang J, Jiang Y and Li H 2022 J. Phys. Chem. Lett.13 6644 [30] Kohn W and Sham L J 1965 Phys. Rev.140 A1133 [31] Hohenberg P and Kohn W 1964 Phys. Rev. B136 B864 [32] Kresse G and Hafner J 1993 Phys. Rev. B48 13115 [33] Kresse G and Furthmuller J 1996 Phys. Rev. B54 11169 [34] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B46 6671 [35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [36] Blochl P E 1994 Phys. Rev. B50 17953 [37] Nose S 1984 J. Chem. Phys.81 511 [38] Hoover W G 1985 Phys. Rev. A31 1695 [39] Baletto F and Ferrando R 2005 Rev. Mod. Phys.77 371 [40] Pannetier J, Bassasalsina J, Rodriguezcarvajal J and Caignaert V 1990 Nature346 343 [41] Jones R O 1993 J. Chem. Phys.99 1194 [42] Wang L L and Johnson D D 2007 Phys. Rev. B75 235405 [43] Piotrowski M J, Piquini P and Da Silva J L F 2010 Phys. Rev. B81 155446 [44] Bobadova-Parvanova P, Jackson K A, Srinivas S and Horoi M 2002 Phys. Rev. B66 195402 [45] Ma Q M, Xie Z, Wang J, Liu Y and Li Y C 2007 Solid State Commun.142 114 [46] Kim E, Mohrland A, Weck P F, Pang T, Czerwinski K R and Tomanek D 2014 Chem. Phys. Lett.613 59 [47] Wang S Y, Yu J Z, Mizuseki H, Yan J A, Kawazoe Y and Wang C Y 2004 J. Chem. Phys.120 8463 [48] Wang S Y, Duan W, Zhao D L and Wang C Y 2002 Phys. Rev. B65 165424 [49] Yuan H K, Chen H, Kuang A L, Tian C L and Wang J Z 2013 J. Chem. Phys.139 034314 [50] Alvarado-Leyva P G, Aguilera-Granja F, Balbas L C and Vega A 2013 Phys. Chem. Chem. Phys.15 14458 [51] Purdum H, Montano P A, Shenoy G K and Morrison T 1982 Phys. Rev. B25 4412 [52] Doverstal M, Lindgren B, Sassenberg U, Arrington C A and Morse M D 1992 J. Chem. Phys.97 7087 [53] Dieguez O, Alemany M M G, Rey C, Ordejon P and Gallego L J 2001 Phys. Rev. B63 205407 [54] Singh R and Kroll P 2008 Phys. Rev. B78 245404 [55] de Heer W A, Milani P and Chtelain A 1990 Phys. Rev. Lett.65 488 [56] Billas I M, Chatelain A and de Heer W A 1994 Science265 1682 [57] Apsel S E, Emmert J W, Deng J and Bloomfield L A 1996 Phys. Rev. Lett.76 1441 [58] Moruzzi V L and Marcus P M 1988 Phys. Rev. B38 1613 [59] Wassermann E F 1991 J. Magn. Magn. Mater.100 346 [60] Sleight A 2003 Nature425 674
Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.