|
|
Magneto-volume effect in FenTi13-n clusters during thermal expansion |
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉)† |
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China |
|
|
Abstract Ab initio molecular dynamics calculations have been carried out to search for the ground state structure of Fe$_{n}$Ti$_{13-n}$ clusters and measure the thermal expansion of Fe$_{n}$Ti$_{13-n}$. The volume of Fe$_{n}$Ti$_{13-n}$ clusters during thermal expansion is jointly determined by anharmonic interaction and magneto-volume effect. It has been found that Fe$_{6}$Ti$_{7}$, Fe$_{9}$Ti$_{4}$, Fe$_{11}$Ti$_{2}$, and Fe$_{13}$ clusters can exhibit the remarkable magneto-volume effect with abnormal volume behaviors and magnetic moment behaviors during thermal expansion. A prerequisite for the magneto-volume effect of Fe$_{n}$Ti$_{13-n}$ clusters during thermal expansion has been revealed and the magnitude of the magneto-volume is also approximately determined. Furthermore, the magneto-volume behaviors of Fe$_{n}$Ti$_{13-n}$ clusters are qualitatively characterized by the energy contour map. Our results shed light on the mechanism of the magneto-volume effect in Fe$_{n}$Ti$_{13-n}$ clusters during thermal expansion, which can guide the design of nanomaterials with zero expansion or even controllable expansion properties.
|
Received: 17 August 2022
Revised: 28 December 2022
Accepted manuscript online: 30 December 2022
|
PACS:
|
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
Fund: We would like to acknowledge the support from the National Natural Science Foundation of China (Grant No. 52171038) as well as key R&D projects in Shandong Province (Grant No. 2021SFGC1001). This work is also supported by the Special Funding in the Project of the Taishan Scholar Construction Engineering and the program of Jinan Science and Technology Bureau (Grant No. 2020GXRC019) as well as new material demonstration platform construction project from Ministry of Industry and Information Technology of China (Grant No. 2020-370104-34-03-043952-01-11). |
Corresponding Authors:
Hui Li
E-mail: lihuilmy@hotmail.com
|
Cite this article:
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉) Magneto-volume effect in FenTi13-n clusters during thermal expansion 2023 Chin. Phys. B 32 046501
|
[1] van Schilfgaarde M, Abrikosov I A and Johansson B 1999 Nature 400 46 [2] Song Y Z, Shi N K, Deng S Q, Xing X R and Chen J 2021 Prog. Mater. Sci. 121 100835 [3] Guillaume C E 1904 Nature 71 134 [4] Moruzzi V L 1990 Phys. Rev. B 41 6939 [5] Ekholm M and Abrikosov I A 2011 Phys. Rev. B 84 104423 [6] Akai H and Dederichs P H 1993 Phys. Rev. B 47 8739 [7] Abrikosov I A, Kissavos A E, Liot F, Alling B, Simak S I, Peil O and Ruban A V 2007 Phys. Rev. B 76 014434 [8] Liot F and Abrikosov I A 2009 Phys. Rev. B 79 014202 [9] Korenman V and Wyman B 1981 Phys. Rev. B 24 5413 [10] Rao Z Y, Cakir A, Ozgun O, Ponge D, Raabe D, Li Z M and Acet M 2021 Phys. Rev. Mater. 5 044406 [11] Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M and Shamoto S 2008 Phys. Rev. Lett. 101 205901 [12] Iikubo S, Kodama K, Takenaka K, Takagi H and Shamoto S 2008 Phys. Rev. B 77 020409 [13] Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902 [14] Takenaka K, Ichigo M, Hamada T, Ozawa A, Shibayama T, Inagaki T and Asano K 2014 Sci. Technol. Adv. Mater. 15 015009 [15] Cowley R A 1963 Adv. Phys. 12 421 [16] Wallace D C 1965 Phys. Rev. 139 A877 [17] Yokoyama T and Eguchi K 2013 Phys. Rev. Lett. 110 075901 [18] Khmelevskyi S, Turek I and Mohn P 2003 Phys. Rev. Lett. 91 037201 [19] Khmelevskyi S and Mohn P 2010 Phys. Rev. B 82 134402 [20] Huang R, Liu Y, Fan W, Tan J, Xiao F, Qian L and Li L 2013 J. Am. Chem. Soc. 135 11469 [21] Song Y, Sun Q, Yokoyama T, Zhu H, Li Q, Huang R, Ren Y, Huang Q, Xing X and Chen J 2020 J. Phys. Chem. Lett. 11 1954 [22] Wang C, Chu L, Yao Q, Sun Y, Wu M, Ding L, Yan J, Na Y, Tang W, Li G, Huang Q and Lynn J W 2012 Phys. Rev. B 85 220103 [23] Guo X G , Lin J C, Tong P, Wang M, Wu Y, Yang C, Song B, Lin S, Song W H and Sun Y P 2015 Appl. Phys. Lett. 107 202406 [24] Song Y, Chen J, Liu X, Wang C, Zhang J, Liu H, Zhu H, Hu L, Lin K, Zhang S and Xing X 2018 J. Am. Chem. Soc. 140 602 [25] Li B, Luo X H, Wang H, Ren W J, Yano S, Wang C W, Gardner J S, Liss K D, Miao P, Lee S H, Kamiyama T, Wu R Q, Kawakita Y and Zhang Z D 2016 Phys. Rev. B 93 224405 [26] Li L F, Tong P, Zou Y M, Tong W, Jiang W B, Jiang Y, Zhang X K, Lin J C, Wang M, Yang C, Zhu X B, Song W H and Sun Y P 2018 Acta Mater. 161 258 [27] Poteryaev A I, Skorikov N A, Anisimov V I and Korotin M A 2016 Phys. Rev. B 93 205135 [28] Song Y, Sun Q, Xu M, Zhang J, Hao Y, Qiao Y, Zhang S, Huang Q, Xing X and Chen J 2020 Mater. Horizons 7 275 [29] Fu C, Huang J, Jiang Y and Li H 2022 J. Phys. Chem. Lett. 13 6644 [30] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [31] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864 [32] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 [33] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [34] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671 [35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [36] Blochl P E 1994 Phys. Rev. B 50 17953 [37] Nose S 1984 J. Chem. Phys. 81 511 [38] Hoover W G 1985 Phys. Rev. A 31 1695 [39] Baletto F and Ferrando R 2005 Rev. Mod. Phys. 77 371 [40] Pannetier J, Bassasalsina J, Rodriguezcarvajal J and Caignaert V 1990 Nature 346 343 [41] Jones R O 1993 J. Chem. Phys. 99 1194 [42] Wang L L and Johnson D D 2007 Phys. Rev. B 75 235405 [43] Piotrowski M J, Piquini P and Da Silva J L F 2010 Phys. Rev. B 81 155446 [44] Bobadova-Parvanova P, Jackson K A, Srinivas S and Horoi M 2002 Phys. Rev. B 66 195402 [45] Ma Q M, Xie Z, Wang J, Liu Y and Li Y C 2007 Solid State Commun. 142 114 [46] Kim E, Mohrland A, Weck P F, Pang T, Czerwinski K R and Tomanek D 2014 Chem. Phys. Lett. 613 59 [47] Wang S Y, Yu J Z, Mizuseki H, Yan J A, Kawazoe Y and Wang C Y 2004 J. Chem. Phys. 120 8463 [48] Wang S Y, Duan W, Zhao D L and Wang C Y 2002 Phys. Rev. B 65 165424 [49] Yuan H K, Chen H, Kuang A L, Tian C L and Wang J Z 2013 J. Chem. Phys. 139 034314 [50] Alvarado-Leyva P G, Aguilera-Granja F, Balbas L C and Vega A 2013 Phys. Chem. Chem. Phys. 15 14458 [51] Purdum H, Montano P A, Shenoy G K and Morrison T 1982 Phys. Rev. B 25 4412 [52] Doverstal M, Lindgren B, Sassenberg U, Arrington C A and Morse M D 1992 J. Chem. Phys. 97 7087 [53] Dieguez O, Alemany M M G, Rey C, Ordejon P and Gallego L J 2001 Phys. Rev. B 63 205407 [54] Singh R and Kroll P 2008 Phys. Rev. B 78 245404 [55] de Heer W A, Milani P and Chtelain A 1990 Phys. Rev. Lett. 65 488 [56] Billas I M, Chatelain A and de Heer W A 1994 Science 265 1682 [57] Apsel S E, Emmert J W, Deng J and Bloomfield L A 1996 Phys. Rev. Lett. 76 1441 [58] Moruzzi V L and Marcus P M 1988 Phys. Rev. B 38 1613 [59] Wassermann E F 1991 J. Magn. Magn. Mater. 100 346 [60] Sleight A 2003 Nature 425 674 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|