CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors |
Ping Gao(高平)1,2, Wan-Min Yang(杨万民)2,†, Ting-Ting Wu(武婷婷)2, Miao Wang(王妙)3, and Kun Liu(刘坤)2 |
1 Department of Physics, LvLiang University, Lvliang 033001, China; 2 College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China; 3 School of Science, Xi'an Aeronautical University, Xi'an 710062, China |
|
|
Abstract To study the influence of thickness on the magnetic properties of ReBCO (Re=Y, Gd, Sm, Nd, etc.) bulk superconductors, a single domain gadolinium barium copper oxide (GdBCO) bulk superconductor fabricated by the Re+ 011 top seeded infiltration growth (Re+ 011 TSIG) method was continuously sliced along the bottom to obtain samples of different thickness. The levitation force and attractive force of these samples were tested at 77 K in the zero-field-cooled (ZFC) state. It is found that as the sample thickness decreases, the levitation force decreases gradually whereas the attractive force increases. This is related to the varied ability to resist the penetration of magnetic field occasioned by varying sample thickness, which are deeply revealed by combining with the characteristics of the non-ideal type-I!I superconductor. Further, the levitation force exhibits a trend of slow initial change followed by rapid change, which may be attributed to the growth of the sample. Measurement of the trapped field shows that a similar distribution of trapped field at the top and bottom surfaces can be achieved by removing some materials from the bottom of the bulk. These results provide a reference for meeting the actual requirements of ReBCO bulks of different thicknesses and greatly contribute to practical designs and applications.
|
Received: 10 April 2022
Revised: 15 June 2022
Accepted manuscript online: 18 June 2022
|
PACS:
|
74.72.-h
|
(Cuprate superconductors)
|
|
74.81.Bd
|
(Granular, melt-textured, amorphous, and composite superconductors)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52072229), the Key-grant Project of the Ministry of Education of China (Grant No. 311033), the Fundamental Research Funds for the Central Universities (Grant No. GK201706001), and the Teaching Reform and Innovation Project of Higher Education in Shanxi Province, China (Grant No. J2021719). |
Corresponding Authors:
Wan-Min Yang
E-mail: yangwm@snnu.edu.cn
|
Cite this article:
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤) Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors 2023 Chin. Phys. B 32 027401
|
[1] Ye C Q, Ma G T, Deng Z G, Liu K and Wang J S 2017 IEEE Trans. Appl. Supercond. 27 3602208 [2] Murakami M 1993 Appl. Supercond. 1 1157 [3] Araki S, Nagashima K, Seino H, Miyazaki Y, Takeuchi K, Murakami M, Suzuki, T. Murakami T and Sawa K 2009 IEEE Trans. Appl. Supercond. 19 2111 [4] Murakami M, Komori M, Mitsuda H and Inoue A 2007 Cryogenics 47 272 [5] Hekmati A, Hekmati R and Siamaki M 2017 IEEE Trans. Appl. Supercond. 27 5204408 [6] Tomita M and Murakami M 2003 Nature 421 517 [7] Hirakawa M, Inadama S, Kikukawa K, Suzuki E and Nakasima H 2003 Physica C 392-396 773 [8] Congreve J V J, Dennis A R, Shi Y, Bumby C W, Druiff H, Cardwell D A and Durrell J H 2021 Supercond. Sci. Technol. 34 094003 [9] Nariki S, Sakai N and Murakami M 2002 Physica C 378-381 631 [10] Yang P T, Yang W M, Wang M, Li J W and Guo Y X 2015 Chin. Phys. B 24 117403 [11] Chen I G, Liu J X, Weinstein R and Lau K 1992 J. Appl. Phys. 72 1013 [12] Inoue K, Tanichi M, Miryala M and Murakami M 2019 IEEE Trans. Appl. Supercond. 29 6800405 [13] Sakai N, Nariki S, Nagashima K, Miryala M, Murakami M and Hirabayashi I 2007 Physica C 460-462 305 [14] Jung Y, Go S J, Hoo H T, Lee Y J, Park S D, Jun B H and Kim C J 2017 Prog. Supercond. Cryogenics 19 30 [15] Li C, Zhao L F, Zhou D J, Cheng C H and Zhao Y 2020 J. Supercond. Nov. Magn. 33 2923 [16] Sakai N, Nariki S, Nishimura M, Miyazaki T, Murakami M, Miryala M and Hirabayashi I 2007 Physica C 463-465 348 [17] Vakaliuk O, Werfel F, Jaroszynski J and Halbedel B 2020 Supercond. Sci. Technol. 33 095005 [18] Durrell J H, Dennis A R, Jaroszynski J, Ainslie M D, Palmer K G B, Shi Y H, Campbell A M, Hull J, Strasik M, Hellstrom E E and Cardwell D A 2014 Supercond. Sci. Technol. 27 082001 [19] Leblond C, Monot I, Bourgault D and Desgardin G 1999 Supercond. Sci. Technol. 12 405 [20] Wang J, Yanoviak M M and Raj R 1989 J. Am. Ceram. Soc. 72 846 [21] Shi D L, Lahiri K, Qu D and Sagar S 2015 J. Mater. Res. 12 3036 [22] Kütük S, Bolat S, Öztürk K, Akbulut S and Çakır O 2011 J. Supercond. Nov. Magn. 24 475 [23] Kütük S, Bolat S, Basoglu M and Öztürk 2009 J. Alloys Compd. 488 425 [24] Eisterer M, Haindl S, Zehetmayer M, Gonzalez-Arrabal R, Weber H W, Litzkendorf D, Zeisberger M, Habisreuther T, Gawalek W, Shlyk L and Krabbes G 2006 Supercond. Sci. Technol. 19 S530 [25] Fukai H, Tomita M, Murakami M and Nagatomo T 2002 Supercond. Sci. Technol. 15 1054 [26] Shi Y H, Dennis A R, Durrell J H and Cardwell D A 2019 Supercond. Sci. Technol. 32 025005 [27] Su X Q, Yang W M, Yang P T, Zhang L L and Yakupu A 2017 J. Alloys Compd. 692 95 [28] Wang M, Wu H C, Yang W M, Yang P T, Wang X M, Hao D P, Dang W J, Zhang M and Hu C X 2017 Acta Phys. Sin. 66 167401 (in Chinese) [29] Yang W M, Chen L P and Wang X J 2016 Supercond. Sci. Technol. 29 024004 [30] Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B and Liu P 2006 Physica C 445-448 347 [31] Ma J, Chen Z L, Xian T, Wei X G, Yang W M, Chen S L and Li J W 2018 Acta Phys. Sin. 67 077401 (in Chinese) [32] Qin M J, Li G, Liu H K, Dou S X and Brandt E H 2002 Phys. Rev. B 66 024516 [33] Alqadi M K, Al-khateeb H M, Alzoubi F Y and Ayoub N Y 2007 Chin. Phys. Lett. 24 2664 [34] Antončík F, Lojka M, Hlásek T, Valiente-Blanco I, Perez-Diaz J L and Jankovský O 2020 J. Am. Ceram. Soc. 103 5169 [35] Yang W M 2020 ReBCO Bulk Superconductor and Its Properties (Beijing: Peking University Press) Vol. 1 p. 47 (in Chinese) [36] Yang W M, Yang P T, Wang Y N and Li Q 2017 Physica C 540 32 [37] Wei J C, Chen J L, Horng L and Yang T J 1996 Physica C 267 345 [38] Yang W M, Chao X X, Bian X B, Liu P, Feng Y, Zhang P X and Zhou L 2003 Supercond. Sci. Technol. 16 789 [39] Li G Z and Wang M 2022 Supercond. Sci. Technol. 35 015005 [40] Nariki S, Sakai N, Kita M, Fujikura M, Murakami M and Hirabayashi I 2006 Supercond. Sci. Technol. 19 S500 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|