Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静)1, Yaju Song(宋亚菊)2, Jing Lu(卢竞)1, and Lan Zhou(周兰)1,†
1 Key Laboratory of Low-Dimensional Quantum Structures and and Quantum Control of the Ministry of Education, Department of Physics and Synergetic Innovation Center of Quantum Effects and Applications, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China; 2 College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China
Abstract We investigate the non-Markovianity (NM) of a waveguide QED with a two-level atom as the system and a semi-infinite rectangular waveguide as the environment, where the transverse magnetic (TM) modes define the quantum channels of guided photons. The perfect mirror imposed by the finite end exerts a retarded feedback mechanism to allow for information backflow, which leads to NM dynamics. For the energy separation of the atom far away from the cutoff frequencies of transverse modes, the delay differential equations are obtained with single-excitation initial in the atom. Our attention is focused on the effects of multiple quantum channels involved in guiding photons on the degree of non-Markovian behavior. An asymptotic value of the non-Markovianity can be found as the atom-mirror distance is large enough, however, the asymptotic value of of the atom interacting with the effective double-modes is lower than that of the atom interacting with the effective single-mode. We also show that is a constant, and the analytical expression for is related to the parameters associated with the modes, which is related to the interference of the two modes.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11935006, 12075082, 12205088, and 11975095), the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2020RC4047), the Scientific Research Fund of the Hunan Provincial Education Department (Grant No. 21B0639), and Hunan Normal University Open Foundation of Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of the Ministry of Education (Grant No. QSQC2009).
Corresponding Authors:
Lan Zhou
E-mail: zhoulan@hunnu.edu.cn
Cite this article:
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰) Non-Markovianity of an atom in a semi-infinite rectangular waveguide 2023 Chin. Phys. B 32 030305
[1] Shen J T and Fan S 2005 Opt. Lett.30 2001 [2] Shen J T and Fan S 2005 Phys. Rev. Lett.95 213001 [3] Kimble H J 2008 Nature453 1023 [4] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science319 1062 [5] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett.101 100501 [6] Roy D, Wilson C M and Firstenberg O 2017 Rev. Mod. Phys.89 021001 [7] Hoi I C, Wilson C M, Johansson G, Palomaki T, Peropadre B and Delsing P 2011 Phys. Rev. Lett.107 073601 [8] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett.111 103604 [9] Tiecke T G, Thompson J D, Leon N P, Liu L R, Vuletić V and Lukin M D 2014 Nature508 241 [10] Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G and Dayan B 2014 Science345 903 [11] García-Álvarez L, Casanova J, Mezzacapo A, Egusquiza I L, Lamata L, Romero G and Solano E 2015 Phys. Rev. Lett.114 070502 [12] Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V and Lukin M D 2009 Phys. Rev. Lett.102 203902 [13] Babinec T M, Hausmann B J, Khan M, Zhang Y, Maze J R, Hemmer P R and Lončar M 2010 Nat. Nanotechnology5 195 [14] Arcari M, Söllner I, Javadi A, Lindskov Hansen S, Mahmoodian S, Liu J, Thyrrestrup H, Lee E H, Song J D, Stobbe S and Lodahl P 2014 Phys. Rev. Lett.113 093603 [15] Lund-Hansen T, Stobbe S, Julsgaard B, Thyrrestrup H, Sünner T, Kamp M, Forchel A and Lodahl P 2008 Phys. Rev. Lett.101 113903 [16] Laucht A, Pütz S, Günthner T, Hauke N, Saive R, Frédérick S, Bichler M, Amann M C, Holleitner A W, Kaniber M and Finley J J 2012 Phys. Rev. X2 011014 [17] Goban A, Hung C L, Yu S P, Hood J D, Muniz J A, Lee J H, Martin M J, McClung A C, Choi K S, Chang D E, Painter O and Kimble H J 2014 Nat. Commun.5 3808 [18] Huck A and Andersen U L 2016 Nanophotonics5 483 [19] Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature450 402 [20] Akselrod G M, Argyropoulos C, Hoang T B, Cirací C, Fang C, Huang J, David R S and Mikkelsen M H 2014 Nat. Photon.8 835 [21] Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science327 840 [22] Astafiev O V, Abdumalikov A A, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett.104 183603 [23] Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett.104 193601 [24] Hoi I C, Palomaki T, Lindkvist J, Johansson G, Delsing P and Wilson C M 2012 Phys. Rev. Lett.108 263601 [25] Hoi I C, Kockum A F, Palomaki T, Stace T M, Fan B, Tornberg L, Sathyamoorthy S R, Johansson G, Delsing P and Wilson C M 2013 Phys. Rev. Lett.111 053601 [26] Hoi I C, Wilson C M, Johansson G, Lindkvist J, Peropadre B, Palomaki T and Delsing P 2013 New. J. Phys.15 025011 [27] Van Loo A F, Fedorov A, Lalumiére K, Sanders B C, Blais A and Wallraff A 2013 Science342 1494 [28] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep.718 1 [29] Dirac P A M 1927 Proc. Roy. Soc. A114 767 [30] Purcell E M Confined Electrons and Photons 839 [31] Kleppner D 1981 Phys. Rev. Lett.47 233 [32] Meschede D 1992 Phys. Rep.211 201 [33] Li J G, Zou J and Shao B 2010 Phys. Rev. A81 062124 [34] Zeng H S, Tang N, Zheng Y P and Wang G Y 2011 Phys. Rev. A84 032118 [35] Zeng H S, Tang N, Zheng Y P and Xu T T 2012 Eur. Phys. J. D66 255 [36] Rivas Á, Huelga S F and Plenio M B 2014 Rep. Prog. Phys.77 094001 [37] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys.88 021002 [38] De Vega I and Alonso D 2017 Rev. Mod. Phys.89 015001 [39] Breuer H P, Laine E M and Piilo J 2009 Rev. Rev. Lett.103 210401 [40] Laine E M, Piilo J and Breuer H P 2010 Rev. Rev. A81 062115 [41] Wißmann S, Karlsson A, Laine E M, Piilo J and Breuer H P 2012 Rev. Rev. A86 062108 [42] Breuer H P 2012 J. Phys. B: At. Mol. Opt. Phys.45 154001 [43] Ask A and Johansson G 2022 Phys. Rev. Lett.128 083603 [44] Finsterhölzl R, Katzer M and Carmele A 2020 Phys. Rev. B102 174309 [45] Fang Y L, Ciccarello F and Baranger H U 2018 New. J. Phys.20 043035 [46] Tufarelli T, Ciccarello F and Kim M S 2013 Phys. Rev. A87 013820 [47] Tufarelli T, Kim M S and Ciccarello F 2014 Phys. Rev. A90 012113 [48] Cook R J and Milonni P W 1987 Phys. Rev. A35 5081 [49] Dorner U and Zoller P 2002 Phys. Rev. A66 023816 [50] Huang J F, Shi T, Sun C P and Nori F 2013 Phys. Rev. A88 013836 [51] Li Q, Zhou L and Sun C P 2014 Phys. Rev. A89 063810 [52] Hu L J, Lu G Y, Lu J and Zhou L 2020 Quantum Inf. Process.19 81 [53] Song H X, Sun X Q, Lu J and Zhou L 2018 Commun. Theor. Phys.69 59 [54] Li J, Hu L J, Lu J and Zhou L 2021 Chin. Phys. B30 090307 [55] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys.73 565
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.