Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青)1, Juan Luo(罗娟)1,2, Fangrong Hu(胡放荣)2, and Guangyuan Li(李光元)1,†
1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; 2 Guilin University of Electronic Technology, Guilin 541004, China
Abstract Metasurfaces incorporating graphene hold great promise for the active manipulation of terahertz waves. However, it remains challenging to design a broadband graphene-based terahertz metasurface with switchable functionality of half-wave plate (HWP) and quarter-wave plate (QWP). Here, we propose a graphene-metal hybrid metasurface for achieving broadband switchable HWP/QWP in the terahertz regime. Simulation results show that, by varying the Fermi energy of graphene from 0 eV to 1 eV, the function of the reflective metasurface can be switched from an HWP with polarization conversion ratio exceeding 97% over a wide band ranging from 0.7 THz to 1.3 THz, to a QWP with ellipticity above 0.92 over 0.78 THz-1.33 THz. The sharing bandwidth reaches up to 0.52 THz and the relative bandwidth is as high as 50%. We expect this broadband and dynamically switchable terahertz HWP/QWP will find applications in terahertz sensing, imaging, and telecommunications.
Fund: Project supported by Shenzhen Research Foundation (Grant No. JCYJ20180507182444250).
Corresponding Authors:
Guangyuan Li
E-mail: gy.li@siat.ac.cn
Cite this article:
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元) Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth 2023 Chin. Phys. B 32 027801
[1] Han Z and Bozhevolnyi S I 2013 Rep. Prog. Phys.76 016402 [2] Hao J, Qiu M and Zhou L 2010 Front. Phys. China5 291 [3] Chen H T, Taylor A J and Yu N 2016 Rep. Prog. Phys.79 076401 [4] Zhao J, Cheng Y and Cheng Z 2018 IEEE Photonics J.10 4600210 [5] Cheng Y, Fan J, Luo H and Chen F 2019 IEEE Access8 7615 [6] Fan J and Cheng Y 2020 J. Phys. D: Appl. Phys.53 025109 [7] Chen L, Liao D, Guo X, Zhao J, Zhu Y and Zhuang S 2019 Frontiers Inf. Technol. Electronic Eng.20 591 [8] Cong L, Cao W, Tian Z, Gu J, Han J and Zhang W 2012 New J. Phys.14 115013 [9] Chiang Y J and Yen T J 2013 New J. Phys.14 115013 [10] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A and Chen H T 2013 Science340 1304 [11] Cheng Y, Withayachumnankul W and Upadhyay A 2014 Appl. Phys. Lett.105 181111 [12] Cong L, Xu N, Gu J, Singh R, Han J and Zhang W 2014 Laser Photonics Rev.8 626 [13] Guo T and Argyropoulos C 2016 Opt. Lett.41 5592 [14] Gao X, Yang W, Cao W, Chen M, Jiang Y, Yu X and Li H 2017 Opt. Express25 23945 [15] Ma S, Wang X, Luo W, Sun S, Zhang Y, He Q and Zhou L 2017 Europhys. Lett.117 37007 [16] Vasić B, Zografopoulos D C, Isić G, Beccherelli R and Gajić R 2017 Nanotechnology28 124002 [17] Ji Y Y, Fan F, Wang X H and Chang S J 2018 Opt. Express26 12852 [18] Wang D, Zhang L, Gu Y, Mehmood M, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W and Hong M 2015 Sci. Rep.5 15020 [19] Wang D, Zhang L, Gong Y, Jian L, Venkatesan T, Qiu C W and Hong M 2016 IEEE Photonics J.8 5500308 [20] Nakata Y, Fukawa K, Nakanishi T, Urade Y, Okimura K and Miyamaru F 2019 Phys. Rev. A11 044008 [21] Zhao J X, Song J L, Zhou Y, Liu Y C and Zhou J H 2020 Chin. Phys. Lett.37 64204 [22] Luo J, Shi X, Luo X, Hu F and Li G 2020 Opt. Express28 30861 [23] Luo X, Hu F and Li G 2021 J. Phys. D: Appl. Phys.54 505111 [24] Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan P M, Nordlander P, Halas N J and García de Abajo F J 2013 ACS Nano7 2388 [25] Liu H, Liu Y and Zhu D B 2011 J. Mater. Chem.21 3335 [26] Ryzhii V and Ryzhii M 2007 J. Appl. Phys.101 083114 [27] Zhang Y, Feng Y, Zhu B, Zhao J and Jiang T 2015 Opt. Express23 27230 [28] Tavakol M R, Rahmani B and Khavasi A 2019 IEEE Photon. Technol. Lett.31 931 [29] Zhang W, Jiang J, Yuan J, Liang S, Qian J, Shu J and Jiang L 2018 OSA Continuum1 124 [30] Guan S, Cheng J, Chen T and Chang S 2019 Opt. Lett.44 5683 [31] Qi X, Zou J, Li C, Zhang J, Guo C C and Zhu Z 2020 Opt. Express28 39430 [32] Zhang J, Zhang K, Cao A, Liu Y and Kong W 2020 Opt. Express28 26102 [33] Tamagnone M, Capdevila S, Lombardo A, Wu J, Centeno A, Zurutuza A, Ionescu A, Ferrari A and Mosig J 2018 arXiv: 1806.02202 [34] Tao J, Yu X, Hu B, Dubrovkin A and Wang Q J 2014 Opt. Lett.39 271 [35] Falkovsky L and Pershoguba S 2007 Phys. Rev. B76 153410 [36] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H, Liang X, Zettl A and Shen Y 2011 Nat. Nanotechnol.6 630
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.