Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 027802    DOI: 10.1088/1674-1056/ac8724
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of thickness of antimony selenide film on its photoelectric properties and microstructure

Xin-Li Liu(刘欣丽)1,3,5, Yue-Fei Weng(翁月飞)1,3,5, Ning Mao(毛宁)1,3,5, Pei-Qing Zhang(张培晴)2,3,5, Chang-Gui Lin(林常规)2,3,5, Xiang Shen(沈祥)1,3,4,5, Shi-Xun Dai(戴世勋)2,3,5, and Bao-An Song(宋宝安)1,3,5,†
1 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
2 The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China;
3 Key Laboratory of Photoelectric Detecting Materials and Devices of Zhejiang Province, Ningbo 315211, China;
4 Ningbo Institute of Oceanography, Ningbo University, Ningbo 315211, China;
5 Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China
Abstract  Antimony selenide (Sb2Se3) films are widely used in phase change memory and solar cells due to their stable switching effect and excellent photovoltaic properties. These properties of the films are affected by the film thickness. A method combining the advantages of Levenberg-Marquardt method and spectral fitting method (LM-SFM) is presented to study the dependence of refractive index (RI), absorption coefficient, optical band gap, Wemple-DiDomenico parameters, dielectric constant and optical electronegativity of the Sb2Se3 films on their thickness. The results show that the RI and absorption coefficient of the Sb2Se3 films increase with the increase of film thickness, while the optical band gap decreases with the increase of film thickness. Finally, the reasons why the optical and electrical properties of the film change with its thickness are explained by x-ray diffractometer (XRD), energy dispersive x-ray spectrometer (EDS), Mott-Davis state density model and Raman microstructure analysis.
Keywords:  antimony selenide films      photoelectric properties      Levenberg-Marquardt method and spectral fitting method (LM-SFM)      microstructure  
Received:  19 April 2022      Revised:  15 July 2022      Accepted manuscript online:  05 August 2022
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075109, 62135011, 62075107, and 61935006) and K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Bao-An Song     E-mail:  songbaoan@nbu.edu.cn

Cite this article: 

Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安) Effect of thickness of antimony selenide film on its photoelectric properties and microstructure 2023 Chin. Phys. B 32 027802

[1] Koç F and Sahin M 2019 Appl. Phys. A 125 1
[2] Němec P, Olivier M, Baudet E, Kalendoá A, Benda P and Nazabal V 2014 Mater. Res. Bull. 51 176
[3] Saritha K, Rasool S, Ramakrishna Reddy K T, Saad A M, Tivanov M S, Tikoto S E, Korolik O V and Gremenok V F 2019 Appl. Phys. A 125 704
[4] Kim I 2000 Mater. Lett. 43 221
[5] Ghosh S, Moreira M V B, Fantini C and González J C 2020 Sol. Energy 211 613
[6] Hu X, Tao J, Chen S, Xue J, Weng G, Kaijiang, Hu Z, Jiang J, Chen S, Zhu Z and Chu J 2018 Sol. Energ. Mat. Sol. C. 187 170
[7] Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D and Tang J 2014 ACS Appl. Mater. Inter. 6 10687
[8] Yuan C, Zhang L, Liu W and Zhu C 2016 Sol. Energy 137 256
[9] Malligavathy M, Ananth Kumar R T, Das C, Asokan S and Pathinettam Padiyan D 2015 J. Non-Cryst. Solids 429 93
[10] El Radaf I M 2019 Appl. Phys. A 48 6480
[11] Chen C, Bobela D C, Yang Y, Lu S, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C and Tang J 2017 Frontiers of Optoelectronics 10 18
[12] Malligavathy Rajakumar M, Ananth Kumar R T and Pathinettam Padiyan D 2019 Energ. Source. Part A 429 93
[13] Yang K, Li B and Zeng G 2020 Superlattice. Microst. 145 106618
[14] Chen S, Hu X, Tao J, Xue J, Weng G, Jiang J, Shen X and Chen S 2019 Appl. Opt. 58 2823
[15] Liang G X, Zheng Z H, Fan P, Luo J T, Hu J G, Zhang X H, Ma H L, Fan B, Luo Z K and Zhang D P 2018 Sol. Energ. Mat. Sol. C. 174 263
[16] Dutta A, Singh R, Srivastava S K and Som T 2019 Sol. Energy 194 716
[17] Mao N, Song B, Pan L, Liu X, Lin C, Zhang P, Shen X and Dai S 2021 Opt. Express 29 29329
[18] More J J 1978 Funct. Anal. Appl. 630 105
[19] DrDomenico M and Wemple S H 1969 J. Appl. Phys. 40 720
[20] Wemple S H and DiDomenico M 1971 Phys. Rev. B 3 1338
[21] El-Bana M S, El Radaf I M, Fouad S S and Sakr G B 2017 J. Alloy. Compd. 705 333
[22] Sharma P, El-Bana M S, Fouad S S and Sharma V 2016 J. Alloy. Compd. 667 204
[23] Reddy R R, Rama Gopal K, Narasimhulu K, Reddy L S S, Kumar K R, Reddy C V K and Ahmed S N 2008 Opt. Mater. 31 209
[24] Tichý L, Tichá H, Nagels P, Callaerts R, Mertens R and Vlčeka M 1999 Mater. Lett. 39 122
[25] Hassanien A S and Sharma I 2019 J. Alloys Compd. 798 750
[26] Tsai D C, Chang Z C, Kuo B H, Wang Y H, Chen E C and Shieu F S 2018 J. Alloys Compd. 743 603
[27] Chee H L, Rui H, Wang Z H, Richard L J Q, Ajay K, Conor D, Ben B, T E Kidd, Chancey C C, Mohan Sankaran R and Xuan P A G 2013 ECS Solid State Lett. 5 4337
[28] Shongalova A, Correia M R, Teixeira J P, Leitão J P, González J C, Ranjbar S, Garud S, Vermang B, Cunha J M V, Salomé P M P and Fernandes P A 2018 Sol. Energ. Mat. Sol. C. 187 219
[29] Ivanovaa Z G, Cernoskovab E, Vassilevc V S and Boycheva S V 2003 Mater. Lett. 57 1025
[30] Li Z, Chen X, Zhu H, Chen J, Guo Y, Zhang C, Zhang W, Niu X and Mai Y 2017 Sol. Energ. Mat. Sol. C. 161 190
[31] Lu Y, Song S, Shen X, Wu L, Song Z, Liu B, Dai S and Nie Q 2013 ECS Solid State Lett. 2 P94
[32] Pan L, Song B, Mao N, Xiao C, Lin C, Zhang P, Shen X and Dai S 2021 Opt. Commun. 496 127123
[33] Urbach F 1953 Phys. Rev. 92 1324
[34] Mott N F, Davis E A and Weiser K 1972 Phys. Today 25 55
[1] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[2] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[3] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[4] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[5] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[6] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[7] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[8] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[9] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[10] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[11] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[12] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[13] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[14] Accurate prediction method for the microstructure of amorphous alloys without non-metallic elements
Wei Zhao(赵伟), Jia-Lin Cheng(成家林), Gong Li(李工), and Xin Wang(王辛). Chin. Phys. B, 2021, 30(11): 116103.
[15] Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure
Ge Tang (唐鸽), Ying-Jie Qin(覃英杰), Shi-Shi Xie(谢诗诗), and Meng-Hao Sun(孙梦豪). Chin. Phys. B, 2021, 30(10): 107303.
No Suggested Reading articles found!