CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of thickness of antimony selenide film on its photoelectric properties and microstructure |
Xin-Li Liu(刘欣丽)1,3,5, Yue-Fei Weng(翁月飞)1,3,5, Ning Mao(毛宁)1,3,5, Pei-Qing Zhang(张培晴)2,3,5, Chang-Gui Lin(林常规)2,3,5, Xiang Shen(沈祥)1,3,4,5, Shi-Xun Dai(戴世勋)2,3,5, and Bao-An Song(宋宝安)1,3,5,† |
1 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China; 2 The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China; 3 Key Laboratory of Photoelectric Detecting Materials and Devices of Zhejiang Province, Ningbo 315211, China; 4 Ningbo Institute of Oceanography, Ningbo University, Ningbo 315211, China; 5 Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China |
|
|
Abstract Antimony selenide (Sb2Se3) films are widely used in phase change memory and solar cells due to their stable switching effect and excellent photovoltaic properties. These properties of the films are affected by the film thickness. A method combining the advantages of Levenberg-Marquardt method and spectral fitting method (LM-SFM) is presented to study the dependence of refractive index (RI), absorption coefficient, optical band gap, Wemple-DiDomenico parameters, dielectric constant and optical electronegativity of the Sb2Se3 films on their thickness. The results show that the RI and absorption coefficient of the Sb2Se3 films increase with the increase of film thickness, while the optical band gap decreases with the increase of film thickness. Finally, the reasons why the optical and electrical properties of the film change with its thickness are explained by x-ray diffractometer (XRD), energy dispersive x-ray spectrometer (EDS), Mott-Davis state density model and Raman microstructure analysis.
|
Received: 19 April 2022
Revised: 15 July 2022
Accepted manuscript online: 05 August 2022
|
PACS:
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075109, 62135011, 62075107, and 61935006) and K. C. Wong Magna Fund in Ningbo University. |
Corresponding Authors:
Bao-An Song
E-mail: songbaoan@nbu.edu.cn
|
Cite this article:
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安) Effect of thickness of antimony selenide film on its photoelectric properties and microstructure 2023 Chin. Phys. B 32 027802
|
[1] Koç F and Sahin M 2019 Appl. Phys. A 125 1 [2] Němec P, Olivier M, Baudet E, Kalendoá A, Benda P and Nazabal V 2014 Mater. Res. Bull. 51 176 [3] Saritha K, Rasool S, Ramakrishna Reddy K T, Saad A M, Tivanov M S, Tikoto S E, Korolik O V and Gremenok V F 2019 Appl. Phys. A 125 704 [4] Kim I 2000 Mater. Lett. 43 221 [5] Ghosh S, Moreira M V B, Fantini C and González J C 2020 Sol. Energy 211 613 [6] Hu X, Tao J, Chen S, Xue J, Weng G, Kaijiang, Hu Z, Jiang J, Chen S, Zhu Z and Chu J 2018 Sol. Energ. Mat. Sol. C. 187 170 [7] Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D and Tang J 2014 ACS Appl. Mater. Inter. 6 10687 [8] Yuan C, Zhang L, Liu W and Zhu C 2016 Sol. Energy 137 256 [9] Malligavathy M, Ananth Kumar R T, Das C, Asokan S and Pathinettam Padiyan D 2015 J. Non-Cryst. Solids 429 93 [10] El Radaf I M 2019 Appl. Phys. A 48 6480 [11] Chen C, Bobela D C, Yang Y, Lu S, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C and Tang J 2017 Frontiers of Optoelectronics 10 18 [12] Malligavathy Rajakumar M, Ananth Kumar R T and Pathinettam Padiyan D 2019 Energ. Source. Part A 429 93 [13] Yang K, Li B and Zeng G 2020 Superlattice. Microst. 145 106618 [14] Chen S, Hu X, Tao J, Xue J, Weng G, Jiang J, Shen X and Chen S 2019 Appl. Opt. 58 2823 [15] Liang G X, Zheng Z H, Fan P, Luo J T, Hu J G, Zhang X H, Ma H L, Fan B, Luo Z K and Zhang D P 2018 Sol. Energ. Mat. Sol. C. 174 263 [16] Dutta A, Singh R, Srivastava S K and Som T 2019 Sol. Energy 194 716 [17] Mao N, Song B, Pan L, Liu X, Lin C, Zhang P, Shen X and Dai S 2021 Opt. Express 29 29329 [18] More J J 1978 Funct. Anal. Appl. 630 105 [19] DrDomenico M and Wemple S H 1969 J. Appl. Phys. 40 720 [20] Wemple S H and DiDomenico M 1971 Phys. Rev. B 3 1338 [21] El-Bana M S, El Radaf I M, Fouad S S and Sakr G B 2017 J. Alloy. Compd. 705 333 [22] Sharma P, El-Bana M S, Fouad S S and Sharma V 2016 J. Alloy. Compd. 667 204 [23] Reddy R R, Rama Gopal K, Narasimhulu K, Reddy L S S, Kumar K R, Reddy C V K and Ahmed S N 2008 Opt. Mater. 31 209 [24] Tichý L, Tichá H, Nagels P, Callaerts R, Mertens R and Vlčeka M 1999 Mater. Lett. 39 122 [25] Hassanien A S and Sharma I 2019 J. Alloys Compd. 798 750 [26] Tsai D C, Chang Z C, Kuo B H, Wang Y H, Chen E C and Shieu F S 2018 J. Alloys Compd. 743 603 [27] Chee H L, Rui H, Wang Z H, Richard L J Q, Ajay K, Conor D, Ben B, T E Kidd, Chancey C C, Mohan Sankaran R and Xuan P A G 2013 ECS Solid State Lett. 5 4337 [28] Shongalova A, Correia M R, Teixeira J P, Leitão J P, González J C, Ranjbar S, Garud S, Vermang B, Cunha J M V, Salomé P M P and Fernandes P A 2018 Sol. Energ. Mat. Sol. C. 187 219 [29] Ivanovaa Z G, Cernoskovab E, Vassilevc V S and Boycheva S V 2003 Mater. Lett. 57 1025 [30] Li Z, Chen X, Zhu H, Chen J, Guo Y, Zhang C, Zhang W, Niu X and Mai Y 2017 Sol. Energ. Mat. Sol. C. 161 190 [31] Lu Y, Song S, Shen X, Wu L, Song Z, Liu B, Dai S and Nie Q 2013 ECS Solid State Lett. 2 P94 [32] Pan L, Song B, Mao N, Xiao C, Lin C, Zhang P, Shen X and Dai S 2021 Opt. Commun. 496 127123 [33] Urbach F 1953 Phys. Rev. 92 1324 [34] Mott N F, Davis E A and Weiser K 1972 Phys. Today 25 55 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|