|
|
Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet |
Tao Lin(蔺涛)1, Chengxiang Wang(王承祥)1, Zhiyong Qiu(邱志勇)2,3, Chao Chen(陈超)1, Tao Xing(邢弢)1, Lu Sun(孙璐)4,5, Jianhui Liang(梁建辉)4, Yizheng Wu(吴义政)4, Zhong Shi(时钟)6, and Na Lei(雷娜)1,† |
1 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China; 2 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; 3 Key Laboratory of Energy Materials and Devices(Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; 4 Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; 5 School of Information Science and Technology, Shanghai Technology University, Shanghai 201210, China; 6 Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology&Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
Abstract Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet (Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as 1179 erg/cm3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.
|
Received: 14 October 2022
Revised: 09 November 2022
Accepted manuscript online: 25 November 2022
|
PACS:
|
75.70.Kw
|
(Domain structure (including magnetic bubbles and vortices))
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.60.-d
|
(Domain effects, magnetization curves, and hysteresis)
|
|
Fund: N. L. acknowledges support by the National Natural Science Foundation of China (Grant Nos. 52061135105 and 12074025). Y. W. acknowledges support by the National Natural Science Foundation of China (Grant Nos. 11974079, 12274083, and 12221004), and the Shanghai Municipal Science and Technology Basic Research Project (Grant No. 22JC1400200). |
Corresponding Authors:
Na Lei
E-mail: na.lei@buaa.edu.cn
|
Cite this article:
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜) Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet 2023 Chin. Phys. B 32 027505
|
[1] Suzuki R 1986 Proc. IEEE 74 1582 [2] Bonyhard P, Geusic J, Bobeck A, Yu-Ssu C, Michaelis P and Smith J 1973 IEEE Trans. Magn. 9 433 [3] Huang M and Zhang S 2002 Mater. Chem. Phys. 73 314 [4] Mallmann E J J, Sombra A S B, Goes J C and Fechine P B A 2013 Solid State Phenom. 202 65 [5] Fechine P B A, Silva E N, de Menezes A S, Derov J, Stewart J W, Drehman A J, Vasconcelos I F, Ayala A P, Cardoso L P and Sombra A S B 2009 J. Phys. Chem. Solids 70 202 [6] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031 [7] Du H and Wang X 2022 Chin. Phys. B 31 087507 [8] Tang J, Kong L, Wang W, Du H and Tian M 2019 Chin. Phys. B 28 087503 [9] Jiang W, Chen G, Liu K, Zang J, te Velthuis S G E and Hoffmann A 2017 Phys. Rep. 704 1 [10] Liu Y H and Li Y Q 2015 Chin. Phys. B 24 017506 [11] Tang J, Wu Y, Kong L, Wang W, Chen Y, Wang Y, Soh Y, Xiong Y, Tian M and Du H 2021 Natl. Sci. Rev. 8 nwaa200 [12] Ogawa N, Koshibae W, Beekman A J, Nagaosa N, Kubota M, Kawasaki M and Tokura Y 2015 Proc. Natl. Acad. Sci. USA 112 8977 [13] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283 [14] Peng L C, Zhang Y, Zuo S L, He M, Cai J W, Wang S G, Wei H X, Li J Q, Zhao T Y and Shen B G 2018 Chin. Phys. B 27 066802 [15] Grundy P J and Herd S R 1973 Phys. Stat. Sol. (a) 20 295 [16] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 [17] Zhang C L, Wang J N, Song C K, Mehmood N, Zeng Z Z, Ma Y X, Wang J B and Liu Q F 2022 Rare Met. 41 865 [18] Mehmood N, Wang J, Zhang C, Zeng Z, Wang J and Liu Q 2022 J. Magn. Magn. Mater. 545 168775 [19] Cui B, Yu D, Shao Z, Liu Y, Wu H, Nan P, Zhu Z, Wu C, Guo T, Chen P, Zhou H A, Xi L, Jiang W, Wang H, Liang S, Du H, Wang K L, Wang W, Wu K, Han X, Zhang G, Yang H and Yu G 2021 Adv. Mater. 33 2006924 [20] Jena J, Göbel B, Ma T, Kumar V, Saha R, Mertig I, Felser C and Parkin S S P 2020 Nat. Commun. 11 1115 [21] Peng L, Takagi R, Koshibae W, Shibata K, Nakajima K, Arima T H, Nagaosa N, Seki S, Yu X and Tokura Y 2020 Nat. Nanotechnol. 15 181 [22] Khanh N D, Nakajima T, Yu X, Gao S, Shibata K, Hirschberger M, Yamasaki Y, Sagayama H, Nakao H, Peng L, Nakajima K, Takagi R, Arima T H, Tokura Y and Seki S 2020 Nat. Nanotechnol. 15 444 [23] Šimšová J, Tomáš I, Görnert P, Nevřiva M and Maryško M 1979 Phys. Status Solidi A 53 297 [24] Bonner W A, LeCraw R C, Pierce R D and Van Uitert L G 1978 J. Appl. Phys. 49 1871 [25] Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J and Wang K L 2019 Nat. Electron. 2 182 [26] Ding S, Ross A, Lebrun R, Becker S, Lee K, Boventer I, Das S, Kurokawa Y, Gupta S, Yang J, Jakob G and Kläui M 2019 Phys. Rev. B 100 100406 [27] Büttner F, Mawass M A, Bauer J, Rosenberg E, Caretta L, Avci C O, Gräfe J, Finizio S, Vaz C A F, Novakovic N, Weigand M, Litzius K, Förster J, Träger N, Groß F, Suzuki D, Huang M, Bartell J, Kronast F, Raabe J, Schütz G, Ross C A and Beach G S D 2020 Phys. Rev. Mater. 4 011401 [28] Vélez S, Ruiz-Gómez S, Schaab J, Gradauskaite E, Wörnle M S, Welter P, Jacot B J, Degen C L, Trassin M, Fiebig M and Gambardella P 2022 Nat. Nanotechnol. 17 834 [29] Liu Q B, Meng K K, Xu Z D, Zhu T, Xu X G, Miao J and Jiang Y 2020 Phys. Rev. B 101 174431 [30] Yang Y, Liu T, Bi L and Deng L 2021 J. Alloys Compd. 860 158235 [31] Tan S, Liu Y, Chen J, Yang L, Lan J and Dai B 2019 Journal of Materials Science: Materials in Electronics 30 7410 [32] Kim Y, Bang D J, Kim Y and Kim K H 2020 AIP Adv. 10 025306 [33] Mattheis R and Quednau G 1999 J. Magn. Magn. Mater. 205 143 [34] Ma S, Tan A, Deng J X, Li J, Zhang Z D, Hwang C and Qiu Z Q 2015 Sci. Rep. 5 11055 [35] Chen G, Li J, Liu F Z, Zhu J, He Y, Wu J, Qiu Z Q and Wu Y Z 2010 J. Appl. Phys. 108 073905 [36] Shi Z, Jiang H Y, Zhou S M, Hou Y L, Ye Q L and Su Si M 2016 AIP Adv. 6 015101 [37] Qiao S, Nie S, Zhao J and Zhang X 2015 J. Appl. Phys. 117 093904 [38] Boudiar T, Payet-Gervy B, Blanc-Mignon M F, Rousseau J J, Le Berre M and Joisten H 2004 J. Magn. Magn. Mater. 284 77 [39] Hirai Y, Yoshikawa N, Hirose H, Kawaguchi M, Hayashi M and Shimano R 2020 Phys. Rev. Appl. 14 064015 [40] Caretta L, Rosenberg E, Büttner F, Fakhrul T, Gargiani P, Valvidares M, Chen Z, Reddy P, Muller D A, Ross C A and Beach G S D 2020 Nat. Commun. 11 1090 [41] Nahid M A I and Suzuki T 2004 J. Magn. Magn. Mater. 282 260 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|