Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 027505    DOI: 10.1088/1674-1056/aca604
RAPID COMMUNICATION Prev   Next  

Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet

Tao Lin(蔺涛)1, Chengxiang Wang(王承祥)1, Zhiyong Qiu(邱志勇)2,3, Chao Chen(陈超)1, Tao Xing(邢弢)1, Lu Sun(孙璐)4,5, Jianhui Liang(梁建辉)4, Yizheng Wu(吴义政)4, Zhong Shi(时钟)6, and Na Lei(雷娜)1,†
1 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China;
2 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
3 Key Laboratory of Energy Materials and Devices(Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
4 Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China;
5 School of Information Science and Technology, Shanghai Technology University, Shanghai 201210, China;
6 Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology&Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet (Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as 1179 erg/cm3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.
Keywords:  magnetic bubble      yttrium iron garnet      Kerr microscopy      spintronics  
Received:  14 October 2022      Revised:  09 November 2022      Accepted manuscript online:  25 November 2022
PACS:  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  75.30.Gw (Magnetic anisotropy)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
Fund: N. L. acknowledges support by the National Natural Science Foundation of China (Grant Nos. 52061135105 and 12074025). Y. W. acknowledges support by the National Natural Science Foundation of China (Grant Nos. 11974079, 12274083, and 12221004), and the Shanghai Municipal Science and Technology Basic Research Project (Grant No. 22JC1400200).
Corresponding Authors:  Na Lei     E-mail:  na.lei@buaa.edu.cn

Cite this article: 

Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜) Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet 2023 Chin. Phys. B 32 027505

[1] Suzuki R 1986 Proc. IEEE 74 1582
[2] Bonyhard P, Geusic J, Bobeck A, Yu-Ssu C, Michaelis P and Smith J 1973 IEEE Trans. Magn. 9 433
[3] Huang M and Zhang S 2002 Mater. Chem. Phys. 73 314
[4] Mallmann E J J, Sombra A S B, Goes J C and Fechine P B A 2013 Solid State Phenom. 202 65
[5] Fechine P B A, Silva E N, de Menezes A S, Derov J, Stewart J W, Drehman A J, Vasconcelos I F, Ayala A P, Cardoso L P and Sombra A S B 2009 J. Phys. Chem. Solids 70 202
[6] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
[7] Du H and Wang X 2022 Chin. Phys. B 31 087507
[8] Tang J, Kong L, Wang W, Du H and Tian M 2019 Chin. Phys. B 28 087503
[9] Jiang W, Chen G, Liu K, Zang J, te Velthuis S G E and Hoffmann A 2017 Phys. Rep. 704 1
[10] Liu Y H and Li Y Q 2015 Chin. Phys. B 24 017506
[11] Tang J, Wu Y, Kong L, Wang W, Chen Y, Wang Y, Soh Y, Xiong Y, Tian M and Du H 2021 Natl. Sci. Rev. 8 nwaa200
[12] Ogawa N, Koshibae W, Beekman A J, Nagaosa N, Kubota M, Kawasaki M and Tokura Y 2015 Proc. Natl. Acad. Sci. USA 112 8977
[13] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283
[14] Peng L C, Zhang Y, Zuo S L, He M, Cai J W, Wang S G, Wei H X, Li J Q, Zhao T Y and Shen B G 2018 Chin. Phys. B 27 066802
[15] Grundy P J and Herd S R 1973 Phys. Stat. Sol. (a) 20 295
[16] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[17] Zhang C L, Wang J N, Song C K, Mehmood N, Zeng Z Z, Ma Y X, Wang J B and Liu Q F 2022 Rare Met. 41 865
[18] Mehmood N, Wang J, Zhang C, Zeng Z, Wang J and Liu Q 2022 J. Magn. Magn. Mater. 545 168775
[19] Cui B, Yu D, Shao Z, Liu Y, Wu H, Nan P, Zhu Z, Wu C, Guo T, Chen P, Zhou H A, Xi L, Jiang W, Wang H, Liang S, Du H, Wang K L, Wang W, Wu K, Han X, Zhang G, Yang H and Yu G 2021 Adv. Mater. 33 2006924
[20] Jena J, Göbel B, Ma T, Kumar V, Saha R, Mertig I, Felser C and Parkin S S P 2020 Nat. Commun. 11 1115
[21] Peng L, Takagi R, Koshibae W, Shibata K, Nakajima K, Arima T H, Nagaosa N, Seki S, Yu X and Tokura Y 2020 Nat. Nanotechnol. 15 181
[22] Khanh N D, Nakajima T, Yu X, Gao S, Shibata K, Hirschberger M, Yamasaki Y, Sagayama H, Nakao H, Peng L, Nakajima K, Takagi R, Arima T H, Tokura Y and Seki S 2020 Nat. Nanotechnol. 15 444
[23] Šimšová J, Tomáš I, Görnert P, Nevřiva M and Maryško M 1979 Phys. Status Solidi A 53 297
[24] Bonner W A, LeCraw R C, Pierce R D and Van Uitert L G 1978 J. Appl. Phys. 49 1871
[25] Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J and Wang K L 2019 Nat. Electron. 2 182
[26] Ding S, Ross A, Lebrun R, Becker S, Lee K, Boventer I, Das S, Kurokawa Y, Gupta S, Yang J, Jakob G and Kläui M 2019 Phys. Rev. B 100 100406
[27] Büttner F, Mawass M A, Bauer J, Rosenberg E, Caretta L, Avci C O, Gräfe J, Finizio S, Vaz C A F, Novakovic N, Weigand M, Litzius K, Förster J, Träger N, Groß F, Suzuki D, Huang M, Bartell J, Kronast F, Raabe J, Schütz G, Ross C A and Beach G S D 2020 Phys. Rev. Mater. 4 011401
[28] Vélez S, Ruiz-Gómez S, Schaab J, Gradauskaite E, Wörnle M S, Welter P, Jacot B J, Degen C L, Trassin M, Fiebig M and Gambardella P 2022 Nat. Nanotechnol. 17 834
[29] Liu Q B, Meng K K, Xu Z D, Zhu T, Xu X G, Miao J and Jiang Y 2020 Phys. Rev. B 101 174431
[30] Yang Y, Liu T, Bi L and Deng L 2021 J. Alloys Compd. 860 158235
[31] Tan S, Liu Y, Chen J, Yang L, Lan J and Dai B 2019 Journal of Materials Science: Materials in Electronics 30 7410
[32] Kim Y, Bang D J, Kim Y and Kim K H 2020 AIP Adv. 10 025306
[33] Mattheis R and Quednau G 1999 J. Magn. Magn. Mater. 205 143
[34] Ma S, Tan A, Deng J X, Li J, Zhang Z D, Hwang C and Qiu Z Q 2015 Sci. Rep. 5 11055
[35] Chen G, Li J, Liu F Z, Zhu J, He Y, Wu J, Qiu Z Q and Wu Y Z 2010 J. Appl. Phys. 108 073905
[36] Shi Z, Jiang H Y, Zhou S M, Hou Y L, Ye Q L and Su Si M 2016 AIP Adv. 6 015101
[37] Qiao S, Nie S, Zhao J and Zhang X 2015 J. Appl. Phys. 117 093904
[38] Boudiar T, Payet-Gervy B, Blanc-Mignon M F, Rousseau J J, Le Berre M and Joisten H 2004 J. Magn. Magn. Mater. 284 77
[39] Hirai Y, Yoshikawa N, Hirose H, Kawaguchi M, Hayashi M and Shimano R 2020 Phys. Rev. Appl. 14 064015
[40] Caretta L, Rosenberg E, Büttner F, Fakhrul T, Gargiani P, Valvidares M, Chen Z, Reddy P, Muller D A, Ross C A and Beach G S D 2020 Nat. Commun. 11 1090
[41] Nahid M A I and Suzuki T 2004 J. Magn. Magn. Mater. 282 260
[1] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[2] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[3] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[4] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[5] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[6] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[7] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
[8] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
[9] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[10] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[11] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[12] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[13] Electrical spin polarization through spin-momentum locking in topological-insulator nanostructures
Minhao Zhang(张敏昊), Xuefeng Wang(王学锋), Fengqi Song(宋凤麒), Rong Zhang(张荣). Chin. Phys. B, 2018, 27(9): 097307.
[14] Liquid phase epitaxy magnetic garnet films and their applications
Yi-Heng Rao(饶毅恒), Huai-Wu Zhang(张怀武), Qing-Hui Yang(杨青慧), Dai-Nan Zhang(张岱南), Li-Chuan Jin(金立川), Bo Ma(马博), Yu-Juan Wu(吴玉娟). Chin. Phys. B, 2018, 27(8): 086701.
[15] Lorentz transmission electron microscopy studies on topological magnetic domains
Li-Cong Peng(彭丽聪), Ying Zhang(张颖), Shu-Lan Zuo(左淑兰), Min He(何敏), Jian-Wang Cai(蔡建旺), Shou-Guo Wang(王守国), Hong-Xiang Wei(魏红祥), Jian-Qi Li(李建奇), Tong-Yun Zhao(赵同云), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 066802.
No Suggested Reading articles found!