|
|
High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency |
Zi-Shan Xu(徐子珊)1,2, Han-Mu Wang(王汉睦)2, Ming-Hao Cai(蔡明皓)1,3, Shu-Hang You(游书航)1,3, and Hong-Ping Liu(刘红平)1,3,† |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathmatics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 National University of Defence Technology, Changsha 410073, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We have presented a high resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency (EIT). The EIT spectrum in the $\Xi$-type configuration is usually companied by a double resonance optical pumping (DROP) due to the strong optical coupling between the two upper states, leading to the spectral lines seriously deformed and widely broadened for complex relaxation processes in DROP. Here we demonstrate a high resolution spectroscopy by far-detuning EIT for $^{87}\rm{Rb}$ $\rm{5S_{1/2}\rightarrow5P_{3/2}\rightarrow5D_{5/2}}$ in magnetic fields. The method of far-detuning eliminates the relaxation in DROP to the most extent and decreases the spectral linewidth from more than 20 MHz down to its natural linewidth limit (6 MHz). The deformation of the spectral lines also disappears and the observed spectra are well in accordance with the theoretical calculation. Our work shows that far-detuning EIT is a reliable high resolution spectroscopic method when the relaxation in DROP cannot be neglected, especially for the case of transition to low excited states.
|
Received: 01 March 2022
Revised: 01 April 2022
Accepted manuscript online: 20 April 2022
|
PACS:
|
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
32.10.Fn
|
(Fine and hyperfine structure)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074388 and 12004393). |
Corresponding Authors:
Hong-Ping Liu
E-mail: liuhongping@wipm.ac.cn
|
Cite this article:
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平) High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency 2022 Chin. Phys. B 31 123201
|
[1] Demtröder W 2003 Laser spectroscopy (Berlin: Springer-Verlag) [2] Zhang X B and Ye J 2016 Natl. Sci. Rev. 3 189 [3] Bourzeix S, de Beauvoir B, Nez F, Plimmer M D, de Tomasi F, Julien L, Biraben F and Stacey D N 1996 Phys. Rev. Lett. 76 384 [4] Pappas P G, Burns M M, Hinshelwood D D, Feld M S and Murnick D E 1980 Phys. Rev. A 21 1955 [5] Brandenberger J R 1989 Phys. Rev. A 39 64 [6] Yang B D, Gao J, Liang Q B, Wang J, Zhang T C and Wang J M 2011 Chin. Phys. B 20 044202 [7] Zhao J, Zhu X, Zhang L, Feng Z, Li C and Jia S 2000 Opt. Express 17 15821 [8] Moon H S, Lee L and Kim J B 2008 Opt. Express 16 12163 [9] Moon H S and Noh H R 2012 J. Opt. Soc. Am. B 29 1557 [10] Hamid R, Çetintaş M and Çelik M 2003 Opt. Commun. 224 247 [11] Hamid R, Çetintaş M and Çelik M 2004 Phys. Rev. A 70 025805 [12] Harris S E 1997 Phys. Today 50 36 [13] Lezama A, Barreiro S and Akulshin A M 1999 Phys. Rev. A 59 4732 [14] Boller K J, Imamoglu A and Harris S E 1991 Phys. Rev. Lett. 66 2593 [15] Stwalley W C and Wang H 1999 J. Mol. Spectrosc. 195 194 [16] Tao C, Richmond C A, Mukarakate C, Kable S H, Bacskay G B, Brown E C, Dawes R, Lolur P and Reid S A 2012 J. Chem. Phys. 137 104307 [17] Sunahori F X, Nagarajan R and Clouthier D J 2015 J. Chem. Phys. 143 224308 [18] Ip P C F, Bernath P F and Field R W 1981 J. Mol. Spectrosc. 89 53 [19] Nishiyama A, Yoshida S, Nakajima Y, Sasada H, Nakagawa K, Onae A and Minoshima K 2016 Opt. Express 24 25894 [20] Ishiwata T, Tokunaga A, Shinzawa T and Tanaka I 1984 J. Mol. Spectrosc. 108 79 [21] Gea-Banacloche J, Li Y, Jin S and Xiao M 1995 Phys. Rev. A 51 576 [22] Mondal S, Ghosh A, Islam K, Bhattacharyya D and Bandyopadhyay A 2018 Chin. Phys. B 27 094204 [23] Noh H R and Moon H S 2012 Phys. Rev. A 85 1 [24] Ray A, Sabir Ali M and Chakrabarti A 2013 Euro. Phys. J. D 67 78 [25] Fulton D J, Moseley R R, Shepherd S, Sinclair B D and Dunn M H 1995 Opt. Commun. 116 231 [26] Bhushan S, Chauhan V S, M D and Easwaran R K 2019 Phys. Lett. A 383 125885 [27] Bao S, Yang W, Zhang H, Zhang L, Zhao J and Jia S 2015 J. Phys. Soc. Jpn. 84 104301 [28] Bao S, Zhang H, Zhou J, Zhang L, Zhao J, Xiao L and Jia S 2016 Phys. Rev. A 94 043822 [29] Naber J, Spreeuw R, Tauschinsky A and van Linden van den Heuvell B 2017 SciPost Phys. 2 015 [30] Cheng H, Wang H M, Zhang S S, Xin P P, Luo J and Liu H P 2017 Opt. Express 25 33575 [31] Zhang L, Bao S, Zhang H, Raithel G, Zhao J, Xiao L and Jia S 2018 Opt. Express 26 29931 [32] Wang H M, Cheng H, Zhang S S, Xin P P, Xu Z S and Liu H P 2018 Chin. Phys. B 27 094205 [33] Cheng H, Wang H M, Zhang S S, Xin P P, Luo J and Liu H P 2017 Chin. Phys. B 26 074204 [34] Moon H S and Noh H R 2011 Phys. Rev. A 84 033821 [35] Moon H S and Noh H R 2011 J. Phys. B 44 055004 [36] Yuan J, Dong S, Wang L, Xiao L and Jia S 2020 Laser Phys. 30 025201 [37] Moon H S, Lee L and Kim J B 2007 J. Opt. Soc. Am. B 24 2157 [38] Moon H S, Lee W K, Lee L and Kim J B 2004 Appl. Phys. Lett. 85 3965 [39] Failache H, Valente P, Ban G, Lorent V and Lezama A 2003 Phys. Rev. A 67 043810 [40] Das B C, Bhattacharyya D, Das A, Chakrabarti S and De S 2016 J. Chem. Phys. 145 224312 [41] Kim K, Kwon M, Park H D, Moon H S, Rawat H S, An K and Kim J B 2001 J. Phys. B 34 4801 [42] Kim S, Moon H, Kim K and Kim J 2003 Phys. Rev. A 68 063813 [43] Brazhnikov D V, Taichenachev A V and Yudin V I 2011 Euro. Phys. J. D 63 315 [44] Dey S, Mitra S, Ghosh P N and Ray B 2015 Optik 126 2711 [45] Rehman H U, Mohsin M Q, Noh H R and Kim J T 2016 Opt. Commun. 381 127 [46] Yu H, Kim J D, Jung T Y and Kim J B 2012 J. Korean Phys. Soc. 61 1227 [47] Wang H M, Xu Z S, Ma S C, Cai M H, You S H and Liu H P 2019 Opt. Lett. 44 5816 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|