|
|
Formation of high-density cold molecules via electromagnetic trap |
Ya-Bing Ji(纪亚兵)1, Bin Wei(魏斌)2, Heng-Jiao Guo(郭恒娇)1, Qing Liu(刘青)1, Tao Yang(杨涛)1,3, Shun-Yong Hou(侯顺永)1,†, and Jian-Ping Yin(印建平)1,‡ |
1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China; 2. Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China; 3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Preparation and control of cold molecules are advancing rapidly, motivated by many exciting applications ranging from tests of fundamental physics to quantum information processing. Here, we propose a trapping scheme to create high-density cold molecular samples by using a combination of electric and magnetic fields. In our theoretical analysis and numerical calculations, a typical alkaline-earth monofluoride, MgF, is used to test the feasibility of our proposal. A cold MgF molecular beam is first produced via an electrostatic Stark decelerator and then loaded into the proposed electromagnetic trap, which is composed of an anti-Helmholtz coil, an octupole, and two disk electrodes. Following that, a huge magnetic force is applied to the molecular sample at an appropriate time, which enables further compressing of the spatial distribution of the cold sample. Molecular samples with both higher number density and smaller volume are quite suitable for the laser confinement and other molecular experiments such as cold collisions in the next step.
|
Received: 02 April 2022
Revised: 15 May 2022
Accepted manuscript online:
|
PACS:
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
37.10.Pq
|
(Trapping of molecules)
|
|
37.10.Mn
|
(Slowing and cooling of molecules)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91536218, 11874151, and 11834003), the Fundamental Research Funds for the Central Universities, China, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and the Young Top-Notch Talent Support Program of Shanghai, China. |
Corresponding Authors:
Shun-Yong Hou, Jian-Ping Yin
E-mail: syhou@lps.ecnu.edu.cn;jpyin@phy.ecnu.edu.cn
|
Cite this article:
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平) Formation of high-density cold molecules via electromagnetic trap 2022 Chin. Phys. B 31 103201
|
[1] Andreev V, Ang D G, DeMille D, Doyle J M, Gabrielse G, Haefner J, Hutzler N R, Lasner Z, Meisenhelder C, O'Leary B R, Panda C D, West A D, West E P, Wu X and Collaboration A 2018 Nature 562 355 [2] Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E and Kozyryev I 2014 Science 343 269 [3] Cheng C, van der Poel A P P, Jansen P, Quintero-Perez M, Wall T E, Ubachs W and Bethlem H L 2016 Phys. Rev. Lett. 117 253201 [4] Segev Y, Pitzer M, Karpov M, Akerman N, Narevicius J and Narevicius E 2019 Nature 572 189 [5] Kirste M, Wang X, Schewe H C, Meijer G, Liu K, van der Avoird A, Janssen L M C, Gubbels K B, Groenenboom G C and van de Meerakker S Y T 2012 Science 338 1060 [6] Perreault W E, Mukherjee N and Zare R N 2017 Science 358 356 [7] DeMille D 2002 Phys. Rev. Lett. 88 067901 [8] Baranov M A, Dalmonte M, Pupillo G and Zoller P 2012 Chem. Rev. 112 5012 [9] Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R, Rey A M, Jin D S and Ye J 2013 Nature 501 521 [10] Bohn J L, Rey A M and Ye J 2017 Science 357 1002 [11] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A and Meijer G 2000 Nature 406 491 [12] Crompvoets F M, Bethlem H L, Jongma R T and Meijer G 2001 Nature 411 174 [13] van Veldhoven J, Bethlem H L and Meijer G 2005 Phys. Rev. Lett. 94 083001 [14] Sawyer B C, Stuhl B K, Wang D, Yeo M and Ye J 2008 Phys. Rev. Lett. 101 203203 [15] Stuhl B K, Hummon M T, Yeo M, Quemener G, Bohn J L and Ye J 2012 Nature 492 396 [16] Haas D, von Planta C, Kierspel T, Zhang D and Willitsch S 2019 Commun. Phys. 2 101 [17] Przybylska M, Maciejewski A J and Yaremko Y 2020 New J. Phys. 22 103047 [18] Fitch N J, Parazzoli L P and Lewandowski H J 2020 Phys. Rev. A 101 032703 [19] Reens D, Wu H, Langen T and Ye J 2017 Phys. Rev. A 96 063420 [20] Sawyer B C, Lev B L, Hudson E R, Stuhl B K, Lara M, Bohn J L and Ye J 2007 Phys. Rev. Lett. 98 253002 [21] Stuhl B K, Yeo M, Sawyer B C, Hummon M T and Ye J 2012 Phys. Rev. A 85 033427 [22] Friedrich B and Herschbach D 2000 Phys. Chem. Chem. Phys. 2 419 [23] Lara M, Lev B L and Bohn J L 2008 Phys. Rev. A 78 033433 [24] Shagam Y and Narevicius E 2012 Phys. Rev. A 85 053406 [25] Cremers T, Janssen N, Sweers E and van de Meerakker S Y T 2019 Rev. Sci. Instrum. 90 013104 [26] Chae E 2021 Phys. Chem. Chem. Phys 23 1215 [27] Xu L, Yin Y, Wei B, Xia Y and Yin J 2016 Phys. Rev. A 93 013408 [28] Asensio Ramos A and Trujillo Bueno J 2006 Astrophys. J. 636 548 [29] Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T and Meijer G 2002 Phys. Rev. A 65 053416 [30] Marian A, Haak H, Geng P and Meijer G 2010 Euro. Phys. J. D 59 179 [31] Plomp V, Gao Z, Cremers T and van de Meerakker S Y T 2019 Phys. Rev. A 99 033417 [32] Wall T E, Kanem J F, Dyne J M, Hudson J J, Sauer B E, Hinds E A and Tarbutt M R 2011 Phys. Chem. Chem. Phys. 13 18991 [33] Stapelfeldt H, Sakai H, Constant E and Corkum P B 1997 Phys. Rev. Lett. 79 2787 [34] Suk Zhao B, Sung Chung H, Cho K, Hyup Lee S, Hwang S, Yu J, Ahn Y H, Sohn J Y, Kim D S, Kyung Kang W and Chung D S 2000 Phys. Rev. Lett. 85 2705 [35] Harland P W, Hu W P, Vallance C and Brooks P R 1999 Phys. Rev. A 60 3138 [36] Aggarwal P, Bethlem H L, Borschevsky A, Denis M, Esajas K, Haase P A B, Hao Y, Hoekstra S, Jungmann K, Meijknecht T B, Mooij M C, Timmermans R G E, Ubachs W, Willmann L and Zapara A 2018 Euro. Phys. J. D 72 197 [37] Collaboration N L e, Aggarwal P, Yin Y, Esajas K, Bethlem H L, Boeschoten A, Borschevsky A, Hoekstra S, Jungmann K, Marshall V R, Meijknecht T B, Mooij M C, Timmermans R G E, Touwen A, Ubachs W and Willmann L 2021 Phys. Rev. Lett. 127 173201 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|