Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070601    DOI: 10.1088/1674-1056/abe375
GENERAL Prev   Next  

Evaluation of second-order Zeeman frequency shift in NTSC-F2

Jun-Ru Shi(施俊如)1,2,3, Xin-Liang Wang(王心亮)1,2,†, Yang Bai(白杨)1,2,3, Fan Yang(杨帆)1,2,3, Yong Guan(管勇)1,2, Dan-Dan Liu(刘丹丹)1,2, Jun Ruan(阮军)1,2, and Shou-Gang Zhang(张首刚)1,2
1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
2 Key Laboratory of Time and Frequency Primary Standards, Chinese Academy of Sciences, Xi'an 710600, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Caesium atomic fountain clock is a primary frequency standard, which realizes the duration of second. Its performance is mostly dominated by the frequency accuracy, and the C-field induced second-order Zeeman frequency shift is the major effect, which limits the accuracy improvement. By applying a high-precision current supply and high-performance magnetic shieldings, the C-field stability has been improved significantly. In order to achieve a uniform C-field, this paper proposes a doubly wound C-field solenoid, which compensates the radial magnetic field along the atomic flight region generated by the lead-out single wire and improves the accuracy evaluation of second-order Zeeman frequency shift. Based on the stable and uniform C-field, we launch the selected atoms to different heights and record the magnetically sensitive Ramsey transition $|F = 3, m_{F} = -1\rangle \to |F = 4, m_{F} = -1\rangle$ central frequency, obtaining this frequency shift as 131.03$\times $10$^{-15}$ and constructing the C-field profile ($\sigma = 0.15$ nT). Meanwhile, during normal operation, we lock NTSC-F2 to the central frequency of the magnetically sensitive Ramsey transition $|F = 3, m_{F} = -1\rangle \to |F = 4, m_{F} = -1\rangle$ fringe for ten consecutive days and record this frequency fluctuation in time domain. The first evaluation of second-order Zeeman frequency shift uncertainty is 0.10$\times $10$^{-15}$. The total deviation of the frequency fluctuation on the clock transition induced by the C-field instability is less than 2.6$\times $10$^{-17}$. Compared with NTSC-F1, NTSC-F2, there appears a significant improvement.
Keywords:  caesium atomic fountain clock      second-order Zeeman frequency shift      C-field      magnetic shielding  
Received:  02 December 2020      Revised:  22 January 2021      Accepted manuscript online:  05 February 2021
PACS:  06.30.Ft (Time and frequency)  
  07.77.Gx (Atomic and molecular beam sources and detectors)  
  32.10.-f (Properties of atoms)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFF0200202), the Maintenance and Reformation Program for the Major Science and Technology Fundamental Devices of the Chinese Academy of Sciences (Grant No. DSS-WXGZ-2020-0005), and the Foundation for Western Young Scholars, China (Grant No. XAB2018A06).
Corresponding Authors:  Xin-Liang Wang     E-mail:

Cite this article: 

Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚) Evaluation of second-order Zeeman frequency shift in NTSC-F2 2021 Chin. Phys. B 30 070601

[1] Guéna J, Abgrall M, Rovera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R, Gibble K, Clarion A and Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59 391
[2] Guéna J, Abgrall M, Clairon A and Bize S 2014 Metrologia 51 108
[3] Levi F, Calonico D, Calosso C E, Godone A, Micallizio S and Costanzo G A 2014 Metrologia 51 270
[4] Fang F Chen W L Liu K Liu N F Han L and Li T C 2019 Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference, March 9-15, 2019, New Delhi, India, p. 8738417
[5] Du Y B, Wei R, Dong R C, Zou F and Wang Y Z 2015 Chin. Phys. B 24 070601
[6] Domnin Y S, Baryshev V N, Boyko A I, Elkin G A, Novoselov A V, Kopylov L N and Kupalov D S 2013 Meas. Tech. 55 1155
[7] Takamizawa A, Yanagimachi S, Tanabe T, Hagimoto K, Hirano I, Watabe K, Ikegami T and Harnett J G 2015 IEEE Trans. Instrum. Meas. 64 2504
[8] Wang Q, Zhang N, Guang W, Zhang S G, Wang W L, Wei R and Wang Y Z 2019 Phys. Rev. A 100 022510
[9] Wang X L, Liu D D, Ruan J, Guan Y, Lin R, Zhang H, Chen J, Yu F X, Shi J R and Zhang S G 2018 J. Time Freq. 41 279
[10] Guan Y, Liu D D, Wang X L, Zhang H, Shi J R, Bai Y, Ruan J and Zhang S G 2020 Acta Phys. Sin. 69 140601 (in Chinese)
[11] Pavlis N K and Weiss M A 2003 Metrologia 40 66
[12] Zhang S G 2004 Blackbody Radiation Frequency Shift in An Atomic Cesium Fountain and Improved Clock Performance (PhD Dissertation) (Paris, France: Université Paris VI)
[13] Yang S H, Baek K J, Kwon T Y, Kim Y B and Lee H S 1999 Jpn. J. Appl. Phys. 38 6174
[14] Jefferts S R, Shirley J, Parker T E, Heavner T P, Meekhof D M, Nelson C, Levi F, Costanzo G, Marchi A D, Drullinger R, Hollberg L, Lee W D and Walls F L 2002 Metrologia 39 321
[15] Shirley J H, Lee W D and Drullinger R E 2001 Metrologia 38 427
[16] Meekhof D M, Jefferts S R, Stepanovic M and Parker T E 2001 IEEE Trans. Instrum. Meas. 50 507
[17] Weyers S, Baunch A, Hübner U, Schröder R and Tamm Chr 2000 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 47 432
[18] Zhou Z C, Wei R, Shi C Y, Li T and Wang Y Z 2011 Chin. Phys. B 20 034206
[19] Marmet L and Gertsvolf M Proceedings of the IEEE International Frequency Control Symposium, June 1-4, 2010, California, USA p. 312
[20] Weyers S, Hübner U, Schröder R, Tamm Chr and Bauch A 2003 Metrologia 38 343
[21] Weyers S, Gerginov V, Kazda M, Rahm J, Lipphardt B, Dobrev G and Gibble K 2018 Metrologia 55 789
[22] Heavner T P, Donley E A, Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow S and Jefferts S R 2014 Metrologia 51 174
[23] Guéna J, Abgrall M, Revera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R X, Gibble K, Clairon A and Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59 391
[24] Szymaniec K, Lea S N, Gibble K, Park S E, Liu K and Glowacki P 2016 J. Phys.: Conf. Ser. 723 012003
[25] Ramsey N F 1956 Molecular Beams (New York: Clarendon Press) pp. 68-88
[26] Clairon A Ghezali S Santarelli G Laurent Ph Simon E Lea S Bahoura M Weyers S and Szymaniec K 1996 Proceedings of the IEEE European Frequency & Time Forum March 5-7, 1996, Brighton, UK, p. 218
[27] Gerginov V, Nemitz N, Weyers S, Schröder R, Griebsch D and Wynands R 2010 Metrologia 47 65
[28] Wynands R, Schröder R and Weyers S 2007 IEEE Trans. Instrum. Meas. 56 660
[29] Dolney E A, Hodby E, Holberg L and Kitching J 2007 Rev. Sci. Instrum. 78 083102
[30] Sasada I, Yamamoto T and Yamauchi T 1996 J. Appl. Phys. 79 5490
[31] Wills A P 1899 Phys. Rev. 9 193
[32] Wang W M, Dai K, Zhang Y J and Zhang W Q 2010 J. Time Freq. 33 54
[33] Shi J R 2016 Research on Ramsey and Rabi frequency Pulling Shift in Cesium Fountain Clock (Master Thesis) (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[34] Wang X L 2017 Improvement of Cesium Fountain Clock NTSC-F1 and the Study of Second-Order Zeeman Frequency Shift (PhD Dissertation) (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[35] Ji H Han L and Wang X F B 2009 Experiments in General Physics 1st edn (Jilin: Jilin University Press) p. 252 (in Chinese)
[36] Makdissi A and de Clercq E 2001 Metrologia 38 409
[37] Li L, Ji J W, Ren W, Zhao X, Peng X K, Xiang J F, Lv D S and Liu L 2016 Chin. Phys. B 25 073201
[38] Wang W L, Dong R C, Wei R, Chen T T, Wang Q and Wang Y Z 2018 Rev. Sci. Instrum. 89 033110
[1] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[2] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[3] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[4] A transparent electromagnetic-shielding film based on one-dimensional metal-dielectric periodic structures
Ya-li Zhao(赵亚丽), Fu-hua Ma(马富花), Xu-feng Li(李旭峰), Jiang-jiang Ma(马江将), Kun Jia(贾琨), Xue-hong Wei(魏学红). Chin. Phys. B, 2018, 27(2): 027302.
[5] Electrical bistable devices using composites of zinc sulfide nanoparticles and poly-(N-vinylcarbazole)
Cao Ya-Peng (曹亚鹏), Hu Yu-Feng (胡煜峰), Li Jian-Tao (李剑焘), Ye Hai-Hang (叶海航), Lü Long-Feng (吕龙锋), Ning Yu (宁宇), Lu Qi-Peng (鲁启鹏), Tang Ai-Wei (唐爱伟), Lou Zhi-Dong (娄志东), Hou Yan-Bing (侯延冰), Teng Feng (滕枫). Chin. Phys. B, 2015, 24(3): 037201.
[6] Reciprocity principle-based model for shielding effectiveness prediction of a rectangular cavity with a covered aperture
Jiao Chong-Qing (焦重庆), Li Yue-Yue (李月月). Chin. Phys. B, 2015, 24(10): 104101.
[7] Resonance suppression and electromagnetic shielding effectiveness improvement of an apertured rectangular cavity by using wall losses
Jiao Chong-Qing (焦重庆), Zhu Hong-Zhao (朱弘钊). Chin. Phys. B, 2013, 22(8): 084101.
[8] Dependence of electron dynamics on magnetic fields in semiconductor superlattices
Yang Gui (杨癸), Wang Lei (王磊), Tian Jun-Long (田俊龙). Chin. Phys. B, 2013, 22(12): 127305.
[9] Physical model for the exotic ultraviolet photo-conductivity of ZnO nanowire films
Pan Yue-Wu (潘跃武), Ren Shou-Tian (任守田), Qu Shi-Liang (曲士良), Wang Qiang (王强). Chin. Phys. B, 2013, 22(11): 118102.
[10] Characteristics of anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic, and external electric-field induced spin–orbit couplings
Liu Song(刘宋), Yan Yu-Zhen(颜玉珍), and Hu Liang-Bin(胡梁宾) . Chin. Phys. B, 2012, 21(2): 027201.
[11] Crystal field analysis of the magnetization curves of R2Fe17 and R2Fe17H3 (R=Tb,Ho,Er)
Ma Ru-Gui(马如贵), Yan Yu(闫羽), Zhang Yan-Xiang(张艳香), Du Xiao-Bo(杜晓波), Wang Xiang-Qun(王向群), Su Feng(苏峰), and Jin Han-Min(金汉民). Chin. Phys. B, 2006, 15(9): 2146-2150.
[12] Crystal field analysis of the magnetic properties of RFe11Ti and RFe11TiH (R=Sm, Tb, Ho)
Su Gang (宿刚), Yan Yu (闫羽), Xu Shu-Wei (许淑伟), Du Xiao-Bo (杜晓波), Jin Han-Min (金汉民), Wang Xiang-Qun (王向群). Chin. Phys. B, 2005, 14(10): 2127-2132.
[13] Numerical simulation of the early-time high altitude electromagnetic pulse
Meng Cui (孟萃), Chen Yu-Sheng (陈雨生), Liu Shun-Kun (刘顺坤), Xie Qin-Chuan (谢秦川), Chen Xiang-Yue (陈向跃), Gong Jian-Cheng (龚建成). Chin. Phys. B, 2003, 12(12): 1378-1382.
No Suggested Reading articles found!