Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 043101    DOI: 10.1088/1674-1056/ac29a6
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock

Benquan Lu(卢本全)1, Xiaotong Lu(卢晓同)1, Jiguang Li(李冀光)3, and Hong Chang(常宏)1,2,†
1 National Time Service Center, Xi'an 710000, China;
2 The University of Chinese Academy of Sciences, Beijing 100088, China;
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  In the weak-magnetic-field approximation, we derived an expression of quadratic Zeeman shift coefficient of $^3P^{\rm o}_0$ clock state for $^{88}$Sr and $^{87}$Sr atoms. By using this formula and the multi-configuration Dirac-Hartree-Fock theory, the quadratic Zeeman shift coefficients were calculated. The calculated values $C_2$ = $-23.38(5)$ MHz/T$^2$ for $^{88}$Sr and the $^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm9/2$ clock states for $^{87}$Sr agree well with the other available theoretical and experimental values, especially the most accurate measurement recently. In addition, the calculated values of the $^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm9/2$ clock states were also determined in our $^{87}$Sr optical lattice clock. The consistency with measurements verifies the validation of our calculation model. Our theory is also useful to evaluate the second-order Zeeman shift of the clock transition, for example, the new proposed $^1S_0$, $F = 9/2$, $M_F = \pm5/2$-${}^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm3/2$ transitions.
Keywords:  optical lattice clock      quadratic Zeeman shift coefficient      strontium  
Received:  19 July 2021      Revised:  18 September 2021      Accepted manuscript online:  24 September 2021
PACS:  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  32.60.+i (Zeeman and Stark effects)  
  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775220), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the West Light Foundation of the Chinese Academy of Sciences (Grant No. XAB2018B17).
Corresponding Authors:  Hong Chang     E-mail:  changhong@ntsc.ac.cn

Cite this article: 

Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏) Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock 2022 Chin. Phys. B 31 043101

[1] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[2] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon. 13 714
[3] Lu B Q, Wang Y B, Han J X, Zhang S G, Li J G and Chang H 2017 J. Phys. Commun. 1 055017
[4] Takamoto M and Katori H 2003 Phys. Rev. Lett. 91 223001
[5] Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-willette T, Foreman S M and Ye J 2007 Phy. Rev. A 76 022510
[6] Shi C, Robyr J L, Eismann U, Zawada M, Lorini L, Le Targat R and Lodewyck J 2015 Phy. Rev. A 92 012516
[7] Lu B Q, Wang Y B, Guo Y, Xu Q F, Yin M J, Li J G and Chang H 2018 Chin. Phys. Lett. 35 043203
[8] Zhang T X, Lu B Q, Li J G, Li C B, Chang H, Shi T Y and Lu Z H 2021 J. Quant. Spectrosc. Radiat. Transfer 266 107562
[9] Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, and Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805
[10] Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J and Lemonde P 2011 Phy. Rev. Lett. 106 210801
[11] Falke St, Schnatz H, Vellore Winfred J S R, Middelmann Th, Vogt St, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U and Lisdat Ch 2011 Metrologia 48 399
[12] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[13] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[14] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004
[15] Bowden W, Vianello A, Hill I R, Schioppo M and Hobson R 2020 arXiv:2010.10419v2[physics.atom-ph]
[16] Li J G, Grumer J, Li W X, Andersson M, Brage T, Hutton R, Jönsson P, Yang Y and Zou Y M 2013 Phys. Rev. A 88 013416
[17] Andersson M and Jönsson P 2008 Comput. Phys. Commun. 178 156
[18] Jönsson P, Gaigalas G, Bierón J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197
[19] Andersson M and Jönsson P 2008 Comput. Phys. Commun. 178 156
[20] Li J G, Jönsson P, Godefroid M, Dong C Z and Gaigalas G 2012 Phy. Rev. A 86 052523
[21] Lu B Q, Zhang T X, Chang H, Li J G, Wu Y and Wang J G 2019 Phy. Rev. A 100 012504
[22] https://physics.nist.gov/asd
[23] Taichenachev A V, Yudin V I, Oates C W, Hoyt C W, Barber Z W and Hollberg L 2006 Phys. Rev. Lett. 96 083001
[24] Baillard X, Fouché M, Targat R L, Westergaard P G, Lecallier A, Coq Y L, Rovera G D, Bize S and Lemonde P 2007 Opt. Lett. 32 1812
[25] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701
[26] Lu X T, Li Ting, Kong D H, Wang Y B and Chang H 2019 Acta Phys. Sin. 68 233401 (in Chinese)
[27] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703
[28] Peik E, Schneider T and Tamm C 2005 J. Phys. B:At. Mol. Opt. Phys. 39 145
[29] Nicholson T L 2015 A new record in atomic clock performance (Ph.D. Dissertation) (Boulder:University of Colorado)
[30] Yasuda M, Inaba H, Kohno T, Tanabe T, Nakajima Y, Hosaka K, Akamatsu D, Onae A, Suzuyama T, Amemiya M and Hong F L 2012 Appl. Phys. Express 5 102401
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[5] Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵). Chin. Phys. B, 2022, 31(1): 016702.
[6] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[7] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[8] Josephson effect in the strontium titanate/lanthanum aluminate junction
Xing Yang(阳星), Jie Chen(陈杰), Yabin Yu(余亚斌), Quanhui Liu(刘全慧). Chin. Phys. B, 2019, 28(9): 097401.
[9] Momentum-space crystal in narrow-line cooling of 87Sr
Jian-Xin Han(韩建新), Ben-Quan Lu(卢本全), Mo-Juan Yin(尹默娟), Ye-Bing Wang(王叶兵), Qin-Fang Xu(徐琴芳), Xiao-Tong Lu(卢晓同), Hong Chang(常宏). Chin. Phys. B, 2019, 28(1): 013701.
[10] Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: A continuum interface approach
Hui Gu(顾辉). Chin. Phys. B, 2018, 27(6): 060503.
[11] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[12] Strontium optical lattice clock at the National Time Service Center
Ye-Bing Wang(王叶兵), Mo-Juan Yin(尹默娟), Jie Ren(任洁), Qin-Fang Xu(徐琴芳), Ben-Quan Lu(卢本全), Jian-Xin Han(韩建新), Yang Guo(郭阳), Hong Chang(常宏). Chin. Phys. B, 2018, 27(2): 023701.
[13] Morphological and electrical properties of SrTiO3/TiO2/SrTiO3 sandwich structures prepared by plasma sputtering
Saqib Jabbar, Riaz Ahmad, Paul K Chu. Chin. Phys. B, 2017, 26(1): 010702.
[14] Preparation and characterization of Sr0.5Ba0.5Nb2O6 glass-ceramic on piezoelectric properties
Shan Jiang(姜珊), Xuan-Ming Wang(王炫明), Jia-Yu Li(李佳宇),Yong Zhang(张勇), Tao Zheng(郑涛), Jing-Wen Lv(吕景文). Chin. Phys. B, 2016, 25(3): 037701.
[15] Tuning of magnetic properties of aluminium-doped strontium hexaferrite powders
Xiao-Mei Ma(马小梅), Jie Liu(刘杰), Sheng-Zhi Zhu(朱生志), Hui-Gang Shi(史慧刚). Chin. Phys. B, 2016, 25(12): 126102.
No Suggested Reading articles found!