|
|
Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock |
Benquan Lu(卢本全)1, Xiaotong Lu(卢晓同)1, Jiguang Li(李冀光)3, and Hong Chang(常宏)1,2,† |
1 National Time Service Center, Xi'an 710000, China; 2 The University of Chinese Academy of Sciences, Beijing 100088, China; 3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract In the weak-magnetic-field approximation, we derived an expression of quadratic Zeeman shift coefficient of $^3P^{\rm o}_0$ clock state for $^{88}$Sr and $^{87}$Sr atoms. By using this formula and the multi-configuration Dirac-Hartree-Fock theory, the quadratic Zeeman shift coefficients were calculated. The calculated values $C_2$ = $-23.38(5)$ MHz/T$^2$ for $^{88}$Sr and the $^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm9/2$ clock states for $^{87}$Sr agree well with the other available theoretical and experimental values, especially the most accurate measurement recently. In addition, the calculated values of the $^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm9/2$ clock states were also determined in our $^{87}$Sr optical lattice clock. The consistency with measurements verifies the validation of our calculation model. Our theory is also useful to evaluate the second-order Zeeman shift of the clock transition, for example, the new proposed $^1S_0$, $F = 9/2$, $M_F = \pm5/2$-${}^3P^{\rm o}_0$, $F = 9/2$, $M_F = \pm3/2$ transitions.
|
Received: 19 July 2021
Revised: 18 September 2021
Accepted manuscript online: 24 September 2021
|
PACS:
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
31.15.vj
|
(Electron correlation calculations for atoms and ions: excited states)
|
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775220), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the West Light Foundation of the Chinese Academy of Sciences (Grant No. XAB2018B17). |
Corresponding Authors:
Hong Chang
E-mail: changhong@ntsc.ac.cn
|
Cite this article:
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏) Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock 2022 Chin. Phys. B 31 043101
|
[1] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87 [2] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon. 13 714 [3] Lu B Q, Wang Y B, Han J X, Zhang S G, Li J G and Chang H 2017 J. Phys. Commun. 1 055017 [4] Takamoto M and Katori H 2003 Phys. Rev. Lett. 91 223001 [5] Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-willette T, Foreman S M and Ye J 2007 Phy. Rev. A 76 022510 [6] Shi C, Robyr J L, Eismann U, Zawada M, Lorini L, Le Targat R and Lodewyck J 2015 Phy. Rev. A 92 012516 [7] Lu B Q, Wang Y B, Guo Y, Xu Q F, Yin M J, Li J G and Chang H 2018 Chin. Phys. Lett. 35 043203 [8] Zhang T X, Lu B Q, Li J G, Li C B, Chang H, Shi T Y and Lu Z H 2021 J. Quant. Spectrosc. Radiat. Transfer 266 107562 [9] Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, and Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805 [10] Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J and Lemonde P 2011 Phy. Rev. Lett. 106 210801 [11] Falke St, Schnatz H, Vellore Winfred J S R, Middelmann Th, Vogt St, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U and Lisdat Ch 2011 Metrologia 48 399 [12] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71 [13] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896 [14] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004 [15] Bowden W, Vianello A, Hill I R, Schioppo M and Hobson R 2020 arXiv:2010.10419v2[physics.atom-ph] [16] Li J G, Grumer J, Li W X, Andersson M, Brage T, Hutton R, Jönsson P, Yang Y and Zou Y M 2013 Phys. Rev. A 88 013416 [17] Andersson M and Jönsson P 2008 Comput. Phys. Commun. 178 156 [18] Jönsson P, Gaigalas G, Bierón J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197 [19] Andersson M and Jönsson P 2008 Comput. Phys. Commun. 178 156 [20] Li J G, Jönsson P, Godefroid M, Dong C Z and Gaigalas G 2012 Phy. Rev. A 86 052523 [21] Lu B Q, Zhang T X, Chang H, Li J G, Wu Y and Wang J G 2019 Phy. Rev. A 100 012504 [22] https://physics.nist.gov/asd [23] Taichenachev A V, Yudin V I, Oates C W, Hoyt C W, Barber Z W and Hollberg L 2006 Phys. Rev. Lett. 96 083001 [24] Baillard X, Fouché M, Targat R L, Westergaard P G, Lecallier A, Coq Y L, Rovera G D, Bize S and Lemonde P 2007 Opt. Lett. 32 1812 [25] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701 [26] Lu X T, Li Ting, Kong D H, Wang Y B and Chang H 2019 Acta Phys. Sin. 68 233401 (in Chinese) [27] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703 [28] Peik E, Schneider T and Tamm C 2005 J. Phys. B:At. Mol. Opt. Phys. 39 145 [29] Nicholson T L 2015 A new record in atomic clock performance (Ph.D. Dissertation) (Boulder:University of Colorado) [30] Yasuda M, Inaba H, Kohno T, Tanabe T, Nakajima Y, Hosaka K, Akamatsu D, Onae A, Suzuyama T, Amemiya M and Hong F L 2012 Appl. Phys. Express 5 102401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|