Nitrogen-tailored quasiparticle energy gaps of polyynes
Kan Zhang(张侃)1, Jiling Li(李继玲)1, Peitao Liu(刘培涛)2, Guowei Yang(杨国伟)1, and Lei Shi(石磊)1,†
1 State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; 2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract Polyyne, an sp1-hybridized linear allotrope of carbon, has a tunable quasiparticle energy gap, which depends on the terminated chemical ending groups as well as the chain length. Previously, nitrogen doping was utilized to tailor the properties of different kinds of allotrope of carbon. However, how the nitrogen doping tailors the properties of the polyyne remains unexplored. Here, we applied the GW method to study the quasiparticle energy gaps of the N-doped polyynes with different lengths. When a C atom is substituted by an N atom in a polyyne, the quasiparticle energy gap varies with the substituted position in the polyyne. The modification is particularly pronounced when the second-nearest-neighboring carbon atom of a hydrogen atom is substituted. In addition, the nitrogen doping makes the Fermi level closer to the lowest unoccupied molecular orbital, resulting in an n-type semiconductor. Our results suggest another route to tailor the electronic properties of polyyne in addition to the length of polyyne and the terminated chemical ending groups.
(Other topics in the theory of the electronic structure of atoms and molecules)
Fund: We thank Dr. Zhuhua Zhang for helpful discussion. Project supported by Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515011227), the National Natural Science Foundation of China (Grant No. 51902353), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 22lgqb03), and the Fund from the State Key Laboratory of Optoelectronic Materials and Technologies (Grant No. OEMT-2022-ZRC-01).
Corresponding Authors:
Lei Shi
E-mail: shilei26@mail.sysu.edu.cn
Cite this article:
Kan Zhang(张侃), Jiling Li(李继玲), Peitao Liu(刘培涛), Guowei Yang(杨国伟), and Lei Shi(石磊) Nitrogen-tailored quasiparticle energy gaps of polyynes 2022 Chin. Phys. B 31 123102
[1] Eastmond R, Johnson T R and Walton D R M 1972 Tetrahcdron28 4601 [2] Chang W, Liu F, Liu Y, Zhu T, Fang L, Li Q and Zhao X 2021 Carbon183 571 [3] Chalifoux W A, McDonald R, Ferguson M J and Tykwinski R R 2009 Angew. Chem. Int. Ed.48 7915 [4] Lucotti A, Tommasini M, Fazzi D, Del Zoppo M, Chalifoux W A, Ferguson M J, Zerbi G and Tykwinski R R 2009 J. Am. Chem. Soc.131 4239 [5] Lucotti A, Tommasini M, Chalifoux W A, Fazzi D, Zerbi G and Tykwinski R R 2012 J. Raman Spectrosc.43 95 [6] Cataldo F, Ravagnan L, Cinquanta E, Castelli I E, Manini N, Onida G and Milani P 2010 J. Phys. Chem. B114 14834 [7] Cinquanta E, Ravagnan L, Castelli I E, Cataldo F, Manini N, Onida G and Milani P 2011 J. Chem. Phys.135 194501 [8] Ballmann S, Hieringer W, Secker D, Zheng Q, Gladysz J A, Görling A and Weber H B 2010 ChemPhysChem11 2256 [9] Buntov E A, Zatsepin A F, Guseva M B and Ponosov Y S 2017 Carbon117 271 [10] Heimann R B, Evsyukov S E and Kavan L 1999 Carbyne and Carbynoid Structures (Dordrecht: Kluwer Academic Publicshers) p. 159 [11] Heimann R B, Kleiman J and Salansky N M 1983 Nature306 164 [12] Yuan Q and Ding F 2014 Nanoscale6 12727 [13] Babaev V, Guseva M and Khvostov V, Novikov N and Flood P 2005 Polyynes - Synthesis, Properties, Applications (Boca Raton) p. 219 [14] Casari C S, Tommasini M, Tykwinski R R and Milani A 2016 Nanoscale8 4414 [15] Peierls R 1955 Quantum Theory of Solids (London) p. 108 [16] Ayala P, Arenal R, Rümmeli M, Rubio A and Pichler T 2010 Carbon48 575 [17] Jang J W, Lee C E, Lyu S C, Lee T J and Lee C J 2004 Appl. Phys. Lett.84 2877 [18] Ewels C and Glerup M 2005 J. Nanosci. Nanotechnol.5 1345 [19] Xiang H, Huang B, Li Z, Wei S H, Yang J and Gong X 2012 Phys. Rev. X2 011003 [20] Panchakarla L S, Subrahmanyam K S, Saha S K, Achutharao Govindaraj, Krishnamurthy H R, Waghmare U V and Rao C N R 2009 Adv. Mater.21 4726 [21] Yu S, Zheng W, Wen Q and Jiang Q 2008 Carbon46 537 [22] Alaal N, Medhekar N and Shukla A 2018 Phys. Chem. Chem. Phys.20 10345 [23] Ding Y, Wang Y and Ni J 2009 Appl. Phys. Lett.95 123105 [24] Liu R, Liu H, Li Y, Yi Y, Shang X, Zhang S and Zhang G 2014 Nanoscale6 11336 [25] Bu H, Zhao M, Zhang H, Wang X, Xi Y and Wang Z 2012 J. Phys. Chem. A116 3934 [26] Weimer M, Hieringer W, Sala F D and Görling A 2005 Chem. Phys.309 77 [27] Peach M J G, Tellgren E I, Salek P, Helgaker T and Tozer D J 2007 J. Phys. Chem. A111 11930 [28] van Schilfgaarde M, Kotani T and Faleev S 2006 Phys. Rev. Lett.96 226402 [29] Strinati G, Mattausch H and Hanke W 1980 Phys. Rev. Lett.45 290 [30] Strinati G, Mattausch H and Hanke W 1982 Phys. Rev. B25 2867 [31] Hybertsen M S and Louie S G 1985 Phys. Rev. Lett.55 1418 [32] Hybertsen M S and Louie S G 1986 Phys. Rev. B34 5390 [33] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys.74 601 [34] Golze D, Dvorak M and Rinke P 2019 Front. Chem.7 377 [35] Maggio E, Liu P, van Setten M J and Kresse G 2017 J. Chem. Theor. Comput.13 635 [36] Ergönenc Z, Kim B, Liu P, Kresse G and Franchini C 2018 Phys. Rev. Mater.2 024601 [37] Mostaani E, Monserrat B, Drummond N D and Lambert C J 2016 Phys. Chem. Chem. Phys.18 14810 [38] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett.100 136406 [39] Blöchl P E 1994 Phys. Rev. B50 17953 [40] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [41] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [42] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys.: Condens. Matter21 395502 [43] Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D and Cococcioni M 2017 J. Phys.: Condens. Matter29 465901 [44] Deslippe J, Samsonidze G, Strubbe D A, Jain M, Cohen M L and Louie S G 2012 Comput. Phys. Commun.183 1269 [45] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun.185 2309 [46] Marzari N and Vanderbilt D 1997 Phys. Rev. B56 12847 [47] Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B65 035109 [48] Slepkov A D, Hegmann F A, Eisler S, Elliott E and Tykwinski R R 2004 J. Chem. Phys.120 6807 [49] Shi L, Rohringer P, Wanko M, Rubio A, Waßerroth S, Reich S and Pichler T 2017 Phys. Rev. Mater.1 075601 [50] Gibtner T, Hampel F, Gisselbrecht J P and Hirsch A 2002 Chem. Eur. J.8 408 [51] Wei D, Liu Y, Wang Y, Zhang H, Huang L and Yu G 2009 Nano Lett.9 1752 [52] Derycke V, Martel R, Appenzeller J and Avouris P 2002 Appl. Phys. Lett.80 2773 [53] Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C and Pichler T 2016 Nat. Mater.15 634 [54] Usachov D, Vilkov O, Gruneis A, Haberer D, Fedorov A, Adamchuk V, Preobrajenski A, Dudin P, Barinov A and Oehzelt M 2011 Nano Lett.11 5401 [55] Evseev K V and Sharin E P 2021 AIP Conf. Proc.2328 050009 [56] Pan B, Xiao J, Li J, Liu P, Wang C and Yang G 2015 Sci. Adv.1 e1500857 [57] Geim A K 2009 Science324 1530 [58] Geim A K and Novoselov K S 2007 Nat. Mat.6 183
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.