Abstract We theoretically study thermoelectric transport properties through a triangular triple-quantum-dot (TTQD) structure in the linear response regime using the hierarchical equations of motion approach. It is demonstrated that large Seebeck coefficient can be obtained when properly matching the interdot tunneling strength and magnetic flux at the electron-hole symmetry point, as a result of spin chiral interactions in the TTQD system. We present a systematic investigation of the thermopower (the Seebeck coefficient) dependence on the tunneling strength, magnetic flux, and on-site energy. The Seebeck coefficient shows a clear breakdown of electron-hole symmetry in the vicinity of the Kondo regime, accompanied by the deviation from the semiclassical Mott relation in the Kondo and mixed-valence regimes, which result from the many-body effects of the Kondo correlated induced resonance together with spin chiral interactions.
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华) Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots 2022 Chin. Phys. B 31 097201
[1] Franz R and Wiedemann D 1853 Ann. Phys.165 497 [2] Ashcroft N W and Mermin N D 1976 Solid State Physics (Stanford:Cengage Learning) [3] Turek M and Matveev K A 2002 Phys. Rev. B65 115332 [4] Kubala B, König J and Pekola J 2008 Phys. Rev. Lett.100 066801 [5] Vavilov M G and Stone A D 2005 Phys. Rev. B72 205107 [6] Murphy P, Mukerjee S and Moore J 2008 Phys. Rev. B78 161406(R) [7] Wierzbicki M and Świrkowicz R 2010 Phys. Rev. B82 165334 [8] Liu J, Sun Q F and Xie X C 2010 Phys. Rev. B81 245323 [9] Nguyen T K T, Kiselev M N and Kravtsov V E 2010 Phys. Rev. B82 113306 [10] Gong W J, Wang H M, Han Y and Zhang S J 2010 Curr. Appl. Phys.82 113306 [11] Scheibner R, Buhmann H, Reuter D, Kiselev M N and Molenkamp L W 2005 Phys. Rev. Lett.95 176602 [12] Ye L Z, Hou D, Wang R L, Cao D W, Zheng X and Yan Y J 2014 Phys. Rev. B90 165116 [13] Wang Q, Xie H Q, Nie Y H and Ren W 2013 Phys. Rev. B87 075102 [14] Blanter Y M, Bruder C, Fazio R and Schoeller H 1997 Phys. Rev. B55 4069 [15] Kim T S and Hershfield S 2002 Phys. Rev. Lett.88 136601 [16] Staring A A M, Molenkamp L W, Alphenaar B W, Van Houten H, Buyk O J A, Mabesoone M A A, Beenakker C W J and Foxon C T 1993Europhys. Lett.22 57 [17] Scheibner R, Novik E G, Borzenko T, König M, Reuter D, Wieck A D, Buhmann H and Molenkamp L W 2007 Phys. Rev. B75 041301(R) [18] Ziman J M 1960 Electrons and Phonons (New York:Oxford University Press) [19] Cutler M and Mott N F 1969 Phys. Rev.181 1336 [20] Costi T A and Zlatić V 2010 Phys. Rev. B81 235127 [21] Cheng Y X, Li Z H, Wei J H, Luo H G, Lin H Q and Yan Y J 2020 Sci. China Phys. Mech. Astron.63 297811 [22] Gaudreau L, Studenikin S A, Sachrajda A S, Zawadzki P, Kam A, Lapointe J, Korkusinski M and Hawrylak P 2006 Phys. Rev. Lett.97 036807 [23] Mitchell A K, Jarrold T F, Galpin M R and Logan D E 2013 J. Phys. Chem. B117 12777 [24] Hsieh C Y, Shim Y P, Korkusinski M and Hawrylak P 2012 Rep. Prog. Phys.75 114501 [25] Cheng Y X, Wang Y D, Wei J H, Zhu Z G and Yan Y J 2017 Phys. Rev. B95 155417 [26] Weymann I, BumŁka B R and Barnaś J 2011 Phys. Rev. B83 195302 [27] Niklas M, Trottmann A, Donarini A and Grifoni M 2017 Phys. Rev. B95 115133 [28] Chen C C, Kuo D M T and Chang Y C 2015 Phys. Chem. Chem. Phys.17 19386 [29] Sun L L, Chi F, Fu Z G, Yu S C, Liu L M and Chen H W 2019 J. Low. Temp. Phys.194 235 [30] Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science291 2573 [31] Scarola V W, Park K and Das Sarma S 2004 Phys. Rev. Lett.93 120503 [32] Hsieh C Y, Rene A and Hawrylak P 2012 Phys. Rev. B86 115312 [33] Wang Y D, Zhu Z G, Wei J H and Yan Y J 2020 Europhy. Lett.130 17003 [34] Scarola V W and Das Sarma S 2005 Phys. Rev. A71 032340 [35] Wen X G, Wilczek F and Zee A 1989 Phys. Rev. B39 11413 [36] Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J and Yan Y J 2012 Phys. Rev. Lett.109 266403 [37] Ye L Z, Wang X L, Hou D, Xu R X, Zheng X and Yan Y J 2016 WIREs Comput. Mol. Sci.6 608 [38] Feynman R P and Vernon F L 2000 Ann. Phys.281 547 [39] Jin J S, Zheng X and Yan Y J 2008 J. Chem. Phys.128 234703 [40] Yan Y J 2014 J. Chem. Phys.140 054105 [41] Yan Y J, Jin J S, Xu R X and Zheng X 2016 Front. Phys.11 110306 [42] Wang Y D, Ni J H and Wei J H 2017 Phys. Rev. B96 245426 [43] Cheng Y X, Wang Y D, Wei J H, Zhu Z G and Yan Y J 2017 Phys. Rev. B95 155417 [44] Li Z H, Cheng Y X, Wei J H, Zheng X and Yan Y J 2018 Phys. Rev. B98 115133 [45] Liu Y M, Wang Y D and Wei J H 2022 Chin. Phys. B31 057201
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.