CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain |
Jiaqi Li(李嘉琪)1,2, Xinlu Cheng(程新路)3, and Hong Zhang(张红)1,† |
1 College of Physics, Sichuan University, Chengdu 610065, China; 2 Key Laboratory of High Energy Density Physics and Technology(Ministry of Education), Sichuan University, Chengdu 610065, China; 3 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China |
|
|
Abstract MoS$_{2}$, a transition metal dichalcogenide (TMDC), has attracted significant amount of attention due to its direct bandgap, tunability and optical properties. Recently, a novel structure consisting of MoS$_{2}$ and noble metal nanoclusters has been reported. Inspired by this, first principle calculations are implemented to predict the structures of $M_{6}X_{2}$ and $M_{6}XX'$ ($M= {\rm Au}$, Ag; $X$, $X' ={\rm S}$, Se). The calculated bandgap, band edge position, and optical absorption of these structures prove that the silver compounds (Ag$_{6}X_{2 }$ and Ag$_{6}XX'$) have great potential for catalytic water splitting. In addition, biaxial strain (tensile strain and compressive strain) is applied to adjust the properties of these materials. The bandgap presents a quasi-linear trend with the increase of the applied strain. Moreover, the transition between the direct and indirect bandgap is found. The outstanding electronic and optical properties of these materials provide strong evidence for their application in microelectronic devices, photoelectric devices, and photocatalytic materials.
|
Received: 19 September 2021
Revised: 17 March 2022
Accepted manuscript online: 08 April 2022
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
81.40.Jj
|
(Elasticity and anelasticity, stress-strain relations)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: Projected supported by the National Natural Science Foundation of China (Grant No. 11974253), the National Key R&D Program of China (Grant No. 2017YFA0303600), and Science Specialty Program of Sichuan University (Grant No. 2020SCUNL210). |
Corresponding Authors:
Hong Zhang
E-mail: hongzhang@scu.edu.cn
|
Cite this article:
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红) Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain 2022 Chin. Phys. B 31 097101
|
[1] Du Y, Sheng H, Astruc D and Zhu M 2020 Chem. Rev. 120 526 [2] Kang X and Zhu M 2019 Chem. Soc. Rev. 48 2422 [3] Jia Y and Luo Z 2019 Coord. Chem. Rev. 400 213053 [4] Luo Z, Castleman A W, Jr. and Khanna S N 2016 Chem. Rev. 116 14456 [5] Luo Z and Castleman A W 2014 Acc Chem. Res 47 2931 [6] Crasto D, Malola S, Brosofsky G, Dass A and Hakkinen H 2014 J. Am. Chem. Soc. 136 5000 [7] Zeng C, Li T, Das A, Rosi N L and Jin R 2013 J. Am. Chem. Soc. 135 10011 [8] Yao C, Lin Y J, Yuan J, Liao L, Zhu M, Weng L H, Yang J and Wu Z 2015 J. Am. Chem. Soc. 137 15350 [9] Wan X K, Xu W W, Yuan S F, Gao Y, Zeng X C and Wang Q M 2015 Angew. Chem. Int. Ed. Engl. 54 9683 [10] Das A, Li T, Nobusada K, Zeng C, Rosi N L and Jin R 2013 J. Am. Chem. Soc. 135 18264 [11] Negishi Y, Nobusada K and Tsukuda T 2005 Journal of the American Chemical Society 127 5261 [12] Sugiuchi M, Shichibu Y, Nakanishi T, Hasegawa Y and Konishi K 2015 Chem. Commun. (Camb) 51 13519 [13] Shichibu Y, Suzuki K and Konishi K 2012 Nanoscale 4 4125 [14] Shichibu Y and Konishi K 2010 Small 6 1216 [15] Truttmann V, Herzig C, Illes I, Limbeck A, Pittenauer E, Stoger-Pollach M, Allmaier G, Burgi T, Barrabes N and Rupprechter G 2020 Nanoscale 12 12809 [16] Qin C, Yuan Q, Li P, Wang S, Chen S and Zhu M 2020 RSC Advances 10 11493 [17] Qin Z, Zhao D, Zhao L, Xiao Q, Wu T, Zhang J, Wan C and Li G 2019 Nanoscale Advances 1 2529 [18] Du X and Jin R 2019 ACS Nano 13 7383 [19] Zhao S, Austin N, Li M, Song Y, House S D, Bernhard S, Yang J C, Mpourmpakis G and Jin R 2018 ACS Catalysis 8 4996 [20] Liu C, Abroshan H, Yan C, Li G and Haruta M 2015 ACS Catalysis 6 92 [21] Mckenzie L C, Zaikova T O and Hutchison J E 2014 J. Am. Chem. Soc. 136 13426 [22] Gutrath B S, Englert U, Wang Y and Simon U 2013 European Journal of Inorganic Chemistry 2013 2002 [23] Chen X and Hakkinen H 2013 J. Am. Chem. Soc. 135 12944 [24] Safer D, Hainfeld J, Wall J and Reardon J 1982 Science 218 290 [25] Mcpartlin M, Mason R and Malatesta L 1969 J. Chem. Soc. D 7 334 [26] Malatesta L, Naldini L, Simonetta G and Cariati F 1965 Coordination Chemistry Reviews 1 255 [27] Cui S, Mao S, Wen Z, Chang J, Zhang Y and Chen J 2013 Analyst 138 2877 [28] Fampiou I and Ramasubramaniam A 2013 The Journal of Physical Chemistry C 117 19927 [29] Lim D-H, Negreira A S and Wilcox J 2011 The Journal of Physical Chemistry C 115 8961 [30] Guo H, Jin J, Chen Y, Liu X, Zeng D, Wang L and Peng D L 2016 Chem. Commun. (Camb) 52 6918 [31] Sun Q, Zhang X-Q, Wang Y and Lu A H 2015 Chinese Journal of Catalysis 36 683 [32] Gawande M B, Goswami A, Asefa T, Guo H, Biradar A V, Peng D L, Zboril R and Varma R S 2015 Chem. Soc. Rev. 44 7540 [33] Guisbiers G, Khanal S, Ruiz-Zepeda F, Roque De La Puente J and Jose-Yacaman M 2014 Nanoscale 6 14630 [34] Wei S, Wang Q, Zhu J, Sun L, Lin H and Guo Z 2011 Nanoscale 3 4474 [35] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111 [36] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett 11 5111 [37] Joseph S, Thomas S, Mohan J, Kumar A S, Jayasree S T, Thomas S and Kalarikkal N 2021 ACS Omega 6 6623 [38] Wu H, Fang Y G, Anumula R, Andrew G N, Cui G, Fang W, Luo Z and Yao J 2021 Nanoscale 13 5300 [39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [41] Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 118 8207 [42] Zhang W X, Yan H M and He C 2021 Applied Surface Science 566 150716 [43] He C, Liang Y and Zhang W X 2021 Appl. Surf. Sci. 553 149550 [44] Zhang W X, Yin Y and He C 2021 J. Phys. Chem. Lett. 12 5064 [45] Huang H, Li K, Chen Z, Luo L, Gu Y, Zhang D, Ma C, Si R, Yang J, Peng Z and Zeng J 2017 J. Am. Chem. Soc. 139 8152 [46] Lyu F, Bai Y, Li Z, Xu W, Wang Q, Mao J, Wang L, Zhang X and Yin Y 2017 Advanced Functional Materials 27 1702324 [47] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angewandte Chemie International Edition 54 3112 [48] Zhong H, Wang J, Meng F and Zhang X 2016 Angewandte Chemie International Edition 55 9937 [49] Fujishima A and Honda K 1972 Nature 238 37 [50] Liu L and Li Y 2014 Aerosol and Air Quality Research 14 453 [51] Varghese O K, Paulose M, Latempa T J and Grimes C A 2009 Nano Lett. 9 731 [52] Rashmi, Sivakumar S and Pala R G S 2019 J. Phys. Chem. C 123 28620 [53] Mulliken R S 1935 J. Chem. Phys. 3 506 [54] Mulliken R S 1934 J. Chem. Phys. 2 782 [55] Butler M A and Ginley D S 1978 Journal of The Electrochemical Society 125 228 [56] Morrison R S 1980 Electrochemistry at Semiconductor and Oxidized Metal Electrodes (New York:Plenum Press), pp. 49-78 [57] Sanderson R T 1960 Chemical Periodicity (New York:Reinhold) [58] Nozik A J 1978 Ann. Rev. Phys. Chem. 29 189 [59] Kim Y I, Atherton S J, Brigham E S and Mallouk T E 1993 J. Phys. Chem. 45 11802 [60] Narendranath S B, Yadav A K, Bhattacharyya D, Jha S N and Devi R N 2014 ACS Appl. Mater Interfaces 6 12321 [61] Chen E C M, Wentworth W E and Ayala J A 1977 J. Chem. Phys. 67 2642 [62] Lim Y K, Keong Koh E W, Zhang Y W and Pan H 2013 Journal of Power Sources 232 323 [63] Zhang J, Ren F, Deng M and Wang Y 2015 Phys. Chem. Chem. Phys. 17 10218 [64] Zhang J, Deng M, Ren F, Wu Y and Wang Y 2016 RSC Advances 6 12290 [65] Zhang W X, Yin Y and He C 2021 J. Phys. Chem. Lett. 12 7892 [66] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475 [67] Liu P, De Sarkar A and Ahuja R 2014 Comput. Mater. Sci. 86 206 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|