Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097101    DOI: 10.1088/1674-1056/ac6580
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain

Jiaqi Li(李嘉琪)1,2, Xinlu Cheng(程新路)3, and Hong Zhang(张红)1,†
1 College of Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology(Ministry of Education), Sichuan University, Chengdu 610065, China;
3 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  MoS$_{2}$, a transition metal dichalcogenide (TMDC), has attracted significant amount of attention due to its direct bandgap, tunability and optical properties. Recently, a novel structure consisting of MoS$_{2}$ and noble metal nanoclusters has been reported. Inspired by this, first principle calculations are implemented to predict the structures of $M_{6}X_{2}$ and $M_{6}XX'$ ($M= {\rm Au}$, Ag; $X$, $X' ={\rm S}$, Se). The calculated bandgap, band edge position, and optical absorption of these structures prove that the silver compounds (Ag$_{6}X_{2 }$ and Ag$_{6}XX'$) have great potential for catalytic water splitting. In addition, biaxial strain (tensile strain and compressive strain) is applied to adjust the properties of these materials. The bandgap presents a quasi-linear trend with the increase of the applied strain. Moreover, the transition between the direct and indirect bandgap is found. The outstanding electronic and optical properties of these materials provide strong evidence for their application in microelectronic devices, photoelectric devices, and photocatalytic materials.
Keywords:  M6XX'structure      water splitting      biaxial strain      electronic properties      optical absorption  
Received:  19 September 2021      Revised:  17 March 2022      Accepted manuscript online:  08 April 2022
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Projected supported by the National Natural Science Foundation of China (Grant No. 11974253), the National Key R&D Program of China (Grant No. 2017YFA0303600), and Science Specialty Program of Sichuan University (Grant No. 2020SCUNL210).
Corresponding Authors:  Hong Zhang     E-mail:  hongzhang@scu.edu.cn

Cite this article: 

Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红) Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain 2022 Chin. Phys. B 31 097101

[1] Du Y, Sheng H, Astruc D and Zhu M 2020 Chem. Rev. 120 526
[2] Kang X and Zhu M 2019 Chem. Soc. Rev. 48 2422
[3] Jia Y and Luo Z 2019 Coord. Chem. Rev. 400 213053
[4] Luo Z, Castleman A W, Jr. and Khanna S N 2016 Chem. Rev. 116 14456
[5] Luo Z and Castleman A W 2014 Acc Chem. Res 47 2931
[6] Crasto D, Malola S, Brosofsky G, Dass A and Hakkinen H 2014 J. Am. Chem. Soc. 136 5000
[7] Zeng C, Li T, Das A, Rosi N L and Jin R 2013 J. Am. Chem. Soc. 135 10011
[8] Yao C, Lin Y J, Yuan J, Liao L, Zhu M, Weng L H, Yang J and Wu Z 2015 J. Am. Chem. Soc. 137 15350
[9] Wan X K, Xu W W, Yuan S F, Gao Y, Zeng X C and Wang Q M 2015 Angew. Chem. Int. Ed. Engl. 54 9683
[10] Das A, Li T, Nobusada K, Zeng C, Rosi N L and Jin R 2013 J. Am. Chem. Soc. 135 18264
[11] Negishi Y, Nobusada K and Tsukuda T 2005 Journal of the American Chemical Society 127 5261
[12] Sugiuchi M, Shichibu Y, Nakanishi T, Hasegawa Y and Konishi K 2015 Chem. Commun. (Camb) 51 13519
[13] Shichibu Y, Suzuki K and Konishi K 2012 Nanoscale 4 4125
[14] Shichibu Y and Konishi K 2010 Small 6 1216
[15] Truttmann V, Herzig C, Illes I, Limbeck A, Pittenauer E, Stoger-Pollach M, Allmaier G, Burgi T, Barrabes N and Rupprechter G 2020 Nanoscale 12 12809
[16] Qin C, Yuan Q, Li P, Wang S, Chen S and Zhu M 2020 RSC Advances 10 11493
[17] Qin Z, Zhao D, Zhao L, Xiao Q, Wu T, Zhang J, Wan C and Li G 2019 Nanoscale Advances 1 2529
[18] Du X and Jin R 2019 ACS Nano 13 7383
[19] Zhao S, Austin N, Li M, Song Y, House S D, Bernhard S, Yang J C, Mpourmpakis G and Jin R 2018 ACS Catalysis 8 4996
[20] Liu C, Abroshan H, Yan C, Li G and Haruta M 2015 ACS Catalysis 6 92
[21] Mckenzie L C, Zaikova T O and Hutchison J E 2014 J. Am. Chem. Soc. 136 13426
[22] Gutrath B S, Englert U, Wang Y and Simon U 2013 European Journal of Inorganic Chemistry 2013 2002
[23] Chen X and Hakkinen H 2013 J. Am. Chem. Soc. 135 12944
[24] Safer D, Hainfeld J, Wall J and Reardon J 1982 Science 218 290
[25] Mcpartlin M, Mason R and Malatesta L 1969 J. Chem. Soc. D 7 334
[26] Malatesta L, Naldini L, Simonetta G and Cariati F 1965 Coordination Chemistry Reviews 1 255
[27] Cui S, Mao S, Wen Z, Chang J, Zhang Y and Chen J 2013 Analyst 138 2877
[28] Fampiou I and Ramasubramaniam A 2013 The Journal of Physical Chemistry C 117 19927
[29] Lim D-H, Negreira A S and Wilcox J 2011 The Journal of Physical Chemistry C 115 8961
[30] Guo H, Jin J, Chen Y, Liu X, Zeng D, Wang L and Peng D L 2016 Chem. Commun. (Camb) 52 6918
[31] Sun Q, Zhang X-Q, Wang Y and Lu A H 2015 Chinese Journal of Catalysis 36 683
[32] Gawande M B, Goswami A, Asefa T, Guo H, Biradar A V, Peng D L, Zboril R and Varma R S 2015 Chem. Soc. Rev. 44 7540
[33] Guisbiers G, Khanal S, Ruiz-Zepeda F, Roque De La Puente J and Jose-Yacaman M 2014 Nanoscale 6 14630
[34] Wei S, Wang Q, Zhu J, Sun L, Lin H and Guo Z 2011 Nanoscale 3 4474
[35] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
[36] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett 11 5111
[37] Joseph S, Thomas S, Mohan J, Kumar A S, Jayasree S T, Thomas S and Kalarikkal N 2021 ACS Omega 6 6623
[38] Wu H, Fang Y G, Anumula R, Andrew G N, Cui G, Fang W, Luo Z and Yao J 2021 Nanoscale 13 5300
[39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Heyd J, Scuseria G E and Ernzerhof M 2006 J. Chem. Phys. 118 8207
[42] Zhang W X, Yan H M and He C 2021 Applied Surface Science 566 150716
[43] He C, Liang Y and Zhang W X 2021 Appl. Surf. Sci. 553 149550
[44] Zhang W X, Yin Y and He C 2021 J. Phys. Chem. Lett. 12 5064
[45] Huang H, Li K, Chen Z, Luo L, Gu Y, Zhang D, Ma C, Si R, Yang J, Peng Z and Zeng J 2017 J. Am. Chem. Soc. 139 8152
[46] Lyu F, Bai Y, Li Z, Xu W, Wang Q, Mao J, Wang L, Zhang X and Yin Y 2017 Advanced Functional Materials 27 1702324
[47] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angewandte Chemie International Edition 54 3112
[48] Zhong H, Wang J, Meng F and Zhang X 2016 Angewandte Chemie International Edition 55 9937
[49] Fujishima A and Honda K 1972 Nature 238 37
[50] Liu L and Li Y 2014 Aerosol and Air Quality Research 14 453
[51] Varghese O K, Paulose M, Latempa T J and Grimes C A 2009 Nano Lett. 9 731
[52] Rashmi, Sivakumar S and Pala R G S 2019 J. Phys. Chem. C 123 28620
[53] Mulliken R S 1935 J. Chem. Phys. 3 506
[54] Mulliken R S 1934 J. Chem. Phys. 2 782
[55] Butler M A and Ginley D S 1978 Journal of The Electrochemical Society 125 228
[56] Morrison R S 1980 Electrochemistry at Semiconductor and Oxidized Metal Electrodes (New York:Plenum Press), pp. 49-78
[57] Sanderson R T 1960 Chemical Periodicity (New York:Reinhold)
[58] Nozik A J 1978 Ann. Rev. Phys. Chem. 29 189
[59] Kim Y I, Atherton S J, Brigham E S and Mallouk T E 1993 J. Phys. Chem. 45 11802
[60] Narendranath S B, Yadav A K, Bhattacharyya D, Jha S N and Devi R N 2014 ACS Appl. Mater Interfaces 6 12321
[61] Chen E C M, Wentworth W E and Ayala J A 1977 J. Chem. Phys. 67 2642
[62] Lim Y K, Keong Koh E W, Zhang Y W and Pan H 2013 Journal of Power Sources 232 323
[63] Zhang J, Ren F, Deng M and Wang Y 2015 Phys. Chem. Chem. Phys. 17 10218
[64] Zhang J, Deng M, Ren F, Wu Y and Wang Y 2016 RSC Advances 6 12290
[65] Zhang W X, Yin Y and He C 2021 J. Phys. Chem. Lett. 12 7892
[66] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[67] Liu P, De Sarkar A and Ahuja R 2014 Comput. Mater. Sci. 86 206
[1] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[2] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[3] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[4] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[5] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[6] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[7] First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
Guoliang Xu(徐国亮), Jing Wang(王晶), Xilin Zhang(张喜林), and Zongxian Yang(杨宗献). Chin. Phys. B, 2022, 31(3): 037304.
[8] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[9] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[10] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[11] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[12] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[13] Tuning charge and orbital ordering in DyNiO3 by biaxial strain
Litong Jiang(姜丽桐), Kuijuan Jin(金奎娟), Wenning Ren(任文宁), and Guozhen Yang(杨国桢). Chin. Phys. B, 2021, 30(11): 117106.
[14] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[15] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
No Suggested Reading articles found!