CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell |
Yi Li(李依)1, Dong Wei(魏东)2, Gaofu Guo(郭高甫)2, Gao Zhao(赵高)1, Yanan Tang(唐亚楠)1,†, and Xianqi Dai(戴宪起)2,‡ |
1 School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China; 2 School of Physics, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract The rapid development of two-dimensional (2D) materials offers new opportunities for 2D ultra-thin excitonic solar cells (XSCs). The construction of van der Waals heterostructure (vdWH) is a recognised and effective method of integrating the properties of single-layer 2D materials, creating particularly superior performance. Here, the prospects of h-BP/h-BAs vdW heterostructures in 2D excitonic solar cells are assessed. We systematically investigate the electronic properties and optical properties of heterogeneous structures by using the density functional theory (DFT) and first-principles calculations. The results indicate that the heterogeneous structure has good optoelectronic properties, such as a suitable direct bandgap and excellent optical absorption properties. The calculation of the phonon spectrum also confirms the well-defined kinetic stability of the heterstructure. We design the heterogeneous structure as a model for solar cells, and calculate its solar cell power conversion efficiency which reaches up to 16.51% and is higher than the highest efficiency reported in organic solar cells (11.7%). Our work illustrates the potential of h-BP/h-BAs heterostructure as a candidate for high-efficiency 2D excitonic solar cells.
|
Received: 11 March 2022
Revised: 13 April 2022
Accepted manuscript online: 28 April 2022
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62074053), the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410237 and 222300420587), the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT030), the Henan Overseas Expertise Introduction Center for Discipline Innovation, China (Grant No. CXJD2019005), the High Performance Computing Center of Henan Normal University, China, and the Aid Program for Science and Technology Innovative Research Team of Zhengzhou Normal University, China. |
Corresponding Authors:
Yanan Tang, Xianqi Dai
E-mail: yntang2010@163.com;xqdai@htu.edu.cn
|
Cite this article:
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起) Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell 2022 Chin. Phys. B 31 097301
|
[1] Linghu J, Yang T, Luo Y, Yang M, Zhou J, Shen L and Feng Y P 2018 ACS Appl. Mater. Inter. 10 32142 [2] He X, Deng X Q, Sun L, Zhang Z H and Fan Z Q 2022 Appl. Surf. Sci. 578 151844 [3] Chen Y, Zhang X, Qin J and Liu R 2021 Nanoscale 13 13437 [4] Ma Z, Li R, Xiong R, Zhang Y, Xu C, Wen C and Sa B 2021 Materials 14 3768 [5] Gregg B A 2003 J. Phys. Chem. B 107 4688 [6] Novoselova K S, Geims K, Morozovd V, et al. 2004 Science 306 666 [7] Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225 [8] Xu R, Zou X, Liu B and Cheng H 2018 Mater. Today 21 391 [9] Liang Q, Jiang J, Meng R, Ye H, Tan C, Yang Q, Sun X, Yang D and Chen X 2016 Phys. Chem. Chem. Phys. 18 16386 [10] Rehman M U, Hua C and Lu Y 2020 Chin. Phys. B 29 057304 [11] Lu Y, Xu W, Zeng M, Yao G, Shen L, Yang M, Luo Z, Pan F, Wu K, Das T, He P, Jiang J, Martin J, Feng Y P, Lin H and Wang X 2015 Nano Lett. 15 80 [12] Xiao C, Wang F, Yang S A, Lu Y, Feng Y and Zhang S 2018 Adv. Funct. Mater. 28 1707383 [13] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [15] Fontana M, Deppe T, Boyd A K, Rinzan M, Liu A Y, Paranjape M and Barbara P 2013 Sci. Rep. 3 1634 [16] Yuan H, Bahramy M S, Morimoto K, Wu S and Iwasa Y 2013 Nat. Phys. 9 563 [17] Parzinger E, Miller B, Blaschke B, Garrido J A and Wurstbauer U 2015 ACS Nano 9 11302 [18] Kennefick D 2005 Phys. Today 58 43 [19] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111 [20] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S and Li L J 2012 Adv. Mater. 24 2320 [21] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 6298 [22] Cheng W, Zhou Z, Pan M, Yang H, Xie Y, Wang B, Zhan Q and Li R W 2018 J. Phys. D:Appl. Phys. 52 095003 [23] Wang X and Xia F 2015 Nat. Mater. 14 264 [24] Li X, Zhang S, Peng W, Zhong H and Lin S 2015 Nano Energy 16 310 [25] Bernardi M, Palummo M and Grossman J C 2012 ACS Nano 6 10082 [26] Eren S, Ozen S, Sozen Y, Yagmurcukardes M and Sahin H 2019 J. Phys. Chem. C 123 31232 [27] Withers F, Pozo-Zamudio O D, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K and Tartakovskii A I 2015 Nat. Mater. 14 301 [28] Wei D, Li Y, Feng Z, Ma Y, Tang Y and Dai X 2022 Physica E 135 114973 [29] Li Y, Feng Z, Sun Q, Ma Y, Tang Y and Dai X 2021 Results Phys. 23 104010 [30] Kang J S, Wu H and Hu Y 2017 Nano Lett. 17 7507 [31] Gui R, Xue Z, Zhou X, Gu C, Ren X, Cheng H, Ma D, Qin J, Liang Y, Yan X, Zhang J, Zhang X, Yu X, Wang L, Zhao Y and Wang S 2020 Phys. Rev. B 101 035302 [32] Xie M, Zhang S, Cai B, Zhu Z, Zou Y and Zeng H 2016 Nanoscale 8 13407 [33] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2007 Phys. Rev. Lett. 100 16602 [34] Broido D A, Lindsay L and Reinecke T L 2013 Phys. Rev. B 88 142 [35] Kang J S, Li M, Wu H, Nguyen H and Hu Y 2018 Science 361 575 [36] Fellet and Melissae 2018 MRS Bull. 43 727 [37] Khossossi N, Panda P K, Singh D, Shukla V and Ahuja R 2020 ACS Appl. Energy Mater. 3 7306 [38] Wang S, Swingle S F, Ye H, Fan F R F, Cowley A H and Bard A J 2012 J. Am. Chem. Soc. 134 11056 [39] Dai X, Zhang X and Li H 2020 Appl. Surf. Sci. 507 144923 [40] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 77 3865 [41] Blochl P E 1994 Phys. Rev. B 50 17953 [42] Kresse G G and Furthmüller J J 1996 Phys. Rev. B 54 11169 [43] Marsman M, Paier J, Stroppa A and Kresse G 2008 J. Phys.:Condens. Matter 20 64201 [44] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [45] Bermudez A, Jelezko F, Plenio M and Retzker A 2011 Phys. Rev. Lett. 107 150503 [46] Alfé D 2009 Comput. Phys. Commun. 180 2622 [47] Raeisi M, Ahmadi S and Rajabpour A 2019 Nanoscale 11 21799 [48] Shu H, Zhao M and Sun M 2019 ACS Appl. Nano Mater. 2 6482 [49] Mohanta M K, Rawat A, Jena N, Dimple, Ahammed R and De Sarkar A 2020 ACS Appl. Mater. Interf. 12 3114 [50] Munive Hernández O, Guerrero-Sánchez J, Ponce-Pérez R, García Díaz R, Fernandez-Escamilla H N and Cocoletzi G H H 2021 Appl. Surf. Sci. 538 148163 [51] Xia C, Du J, Huang X, Xiao W, Xiong W, Wang T, Wei Z, Jia Y, Shi J and Li J 2018 Phys. Rev. B 97 115416 [52] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W and Yan H 2016 Nat. Energy 1 15027 [53] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111 [54] Kaur S, Kumar A, Srivastava S, Tankeshwar K and Pandey R 2018 J. Phys. Chem. C 122 26032 [55] Wei D, Li Y, Feng Z, Guo G, Ma Y, Yu H, Luo Q, Tang Y and Dai X 2021 Chin. Phys. B 30 117103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|