Special Issue:
TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
|
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B |
Prev
Next
|
|
|
Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions |
Yukai Zhuang(庄毓凯)1 and Qingyang Hu(胡清扬)2,† |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 Center for High Pressure Science and Technology Advanced Research(HPSTAR), Beijing 100094, China |
|
|
Abstract Iron oxides are widely found as ores in Earth's crust and are also important constituents of its interiors. Their polymorphism, composition changes, and electronic structures play essential roles in controlling the structure and geodynamic properties of the solid Earth. While all-natural occurring iron oxides are semiconductors or insulators at ambient pressure, they start to metalize under pressure. Here in this work, we review the electronic conductivity and metallization of iron oxides under high-pressure conditions found in Earth's lower mantle. We summarize that the metallization of iron oxides is generally controlled by the pressure-induced bandgap closure near the Fermi level. After metallization, they possess much higher electrical and thermal conductivity, which will facilitate the thermal convection, support a more stable and thicker D$\prime\prime$ layer, and formulate Earth's magnetic field, all of which will constrain the large-scale dynamos of the mantle and core.
|
Received: 06 April 2022
Revised: 21 May 2022
Accepted manuscript online: 02 June 2022
|
PACS:
|
91.60.Gf
|
(High-pressure behavior)
|
|
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 42150101 and 42150102). Qingyang Hu is supported by the CAEP Research Project (Grant No. CX20210048) and a Tencent Xplorer Prize (Grant No. XPLORER-2020-1013). |
Corresponding Authors:
Qingyang Hu
E-mail: qingyang.hu@hpstar.ac.cn
|
Cite this article:
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬) Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions 2022 Chin. Phys. B 31 089101
|
[1] Morgan J W and Anders E 1980 Proc. Natl. Acad. Sci. USA 77 6973 [2] Schwertmann U and Taylor R M 1989 Minerals in soil environments (2nd edn.) (Madison:Soil Science Society of America) pp. 379-438 [3] Wagner D B 1995 Philos. East West 45 136 [4] Lavina B, Dera P, Kim E, Meng Y, Downs R T, Weck P F, Sutton S R and Zhao Y 2011 Proc. Natl. Acad. Sci. USA 108 17281 [5] Lavina B and Meng Y 2015 Sci. Adv. 1 e1400260 [6] Koemets E, Fedotenko T, Khandarkhaeva S, Bykov M, Bykova E, Thielmann M, Chariton S, Aprilis G, Koemets I, Glazyrin K, Liermann H P, Hanfland M, Ohtani E, Dubrovinskaia N, McCammon C and Dubrovinsky L 2021 Eur. J. Inorg. Chem. 2021 3048 [7] Bykova E, Dubrovinsky L, Dubrovinskaia N, Bykov M, McCammon C, Ovsyannikov S V, Liermann H P, Kupenko I, Chumakov A I, Ruffer R, Hanfland M and Prakapenka V 2016 Nat. Commun. 7 10661 [8] Sinmyo R, Bykova E, Ovsyannikov S V, McCammon C, Kupenko I, Ismailova L and Dubrovinsky L 2016 Sci. Rep. 6 32852 [9] Hu Q, Kim D Y, Yang W, Yang L, Meng Y, Zhang L and Mao H K 2016 Nature 534 241 [10] Hu Q, Liu J, Chen J, Yan B, Meng Y, Prakapenka V B, Mao W L and Mao H K 2021 Natl. Sci. Rev. 8 nwaa098 [11] Hu Q and Liu J 2021 Geosci. Front. 12 975 [12] Mao H K and Mao W L 2020 Matter Radiat. Extremes 5 038102 [13] Huang S and Hu Q 2022 J. Appl. Phys. 131 070902 [14] Akahama Y, Kawamura H, Hausermann D, Hanfland M and Shimomura O 1995 Phys. Rev. Lett. 74 4690 [15] Ma Y, Oganov A R and Glass C W 2007 Phys. Rev. B 76 064101 [16] Shimizu K, Suhara K, Ikumo M, Eremets M I and Amaya K 1998 Nature 393 767 [17] Yoo C S 2020 Matter Radiat. Extrem. 5 018202 [18] Yoshino T 2009 Surv. Geophys. 31 163 [19] Zhuang Y, Li J, Lu W, Yang X, Du Z and Hu Q 2022 Chin. Phys. Lett. 39 020701 [20] Zhuang Y, Gan B, Cui Z, Tang R, Tao R, Hou M, Jiang G, Popescu C, Garbarino G, Zhang Y and Hu Q 2022 Sci. Bull. 67 748 [21] Hu Q and Mao H K 2021 Matter Radiat. Extrem. 6 068101 [22] Hou M, He Y, Jang B G, Sun S, Zhuang Y, Deng L, Tang R, Chen J, Ke F, Meng Y, Prakapenka V B, Chen B, Shim J H, Liu J, Kim D Y, Hu Q, Pickard C J, Needs R J and Mao H k 2021 Nat. Geosci. 14 174 [23] Ono S, Ohishi Y and Kikegawa T 2007 J. Phys.-Condens. Mat. 19 036205 [24] Ding Y, Cai Z, Hu Q, Sheng H, Chang J, Hemley R J and Mao W L 2012 Appl. Phys. Lett. 100 041903 [25] Ozawa H, Hirose K, Tateno S, Sata N and Ohishi Y 2010 Phys. Earth Planet. In. 179 157 [26] Knittle E, Jeanloz R, Mitchell A C and Nellis W J 1986 Solid State Commun. 59 513 [27] Fischer R A, Campbell A J, Lord O T, Shofner G A, Dera P and Prakapenka V B 2011 Geophys. Res. Lett. 38 L24301 [28] Ohta K, Hirose K, Shimizu K and Ohishi Y 2010 Phys. Rev. B 82 174120 [29] Hamada M, Kamada S, Ohtani E, Mitsui T, Masuda R, Sakamaki T, Suzuki N, Maeda F and Akasaka M 2016 Phys. Rev. B 93 155165 [30] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105 [31] Shorikov A O, Pchelkina Z V, Anisimov V I, Skornyakov S L and Korotin M A 2010 Phys. Rev. B 82 195101 [32] Leonov I 2015 Phys. Rev. B 92 085142 [33] Zhang P, Cohen R E and Haule K 2017 J. Phys. Conf. Ser. 827 012006 [34] Shim S H, Bengtson A, Morgan D, Sturhahn W, Catalli K, Zhao J, Lerche M and Prakapenka V 2009 Proc. Natl. Acad. Sci. USA 106 5508 [35] Kupenko I, Aprilis G, Vasiukov D M, McCammon C, Chariton S, Cerantola V, Kantor I, Chumakov A I, Ruffer R, Dubrovinsky L and Sanchez-Valle C 2019 Nature 570 102 [36] Pasternak M P, Taylor R D, Jeanloz R, Li X, Nguyen J H and McCammon C A 1997 Phys. Rev. Lett. 79 5046 [37] Kozlenko D P, Dubrovinsky L S, Kichanov S E, Lukin E V, Cerantola V, Chumakov A I and Savenko B N 2019 Sci. Rep. 9 4464 [38] Pasternak M P, Rozenberg G K, Machavariani G Y, Naaman O, Taylor R D and Jeanloz R 1999 Phys. Rev. Lett. 82 4663 [39] Bykova E, Bykov M, Prakapenka V, Konôpková Z, Liermann H P, Dubrovinskaia N and Dubrovinsky L 2013 High Press. Res. 33 534 [40] Rozenberg G K, Dubrovinsky L S, Pasternak M P, Naaman O, Le Bihan T and Ahuja R 2002 Phys. Rev. B 65 064112 [41] Kim K H, Lee S H and Choi J S 1985 J. Phys. Chem. Solids 46 331 [42] Mochizuki S 1977 Phys. Stat. Sol. (a) 41 591 [43] Kunes J, Korotin D M, Korotin M A, Anisimov V I and Werner P 2009 Phys. Rev. Lett. 102 146402 [44] Kunes J, Lukoyanov A V, Anisimov V I, Scalettar R T and Pickett W E 2008 Nat. Mater. 7 198 [45] McMahan A K, Held K and Scalettar R T 2003 Phys. Rev. B 67 075108 [46] Greenberg E, Leonov I, Layek S, Konopkova Z, PasternakMP, Dubrovinsky L, Jeanloz R, Abrikosov I A and Rozenberg G K 2018 Phys. Rev. X 8 031059 [47] Wang S, MaoWL, Sorini A P, Chen C C, Devereaux T P, Ding Y, Xiao Y, Chow P, Hiraoka N, Ishii H, Cai Y Q and Kao C C 2010 Phys. Rev. B 82 144428 [48] Ovsyannikov S V, Morozova N V, Karkin A E and Shchennikov V V 2012 Phys. Rev. B 86 205131 [49] Ju S, Cai T Y, Lu H S and Gong C D 2012 J. Am. Chem. Soc. 134 13780 [50] Dubrovinsky L S, Dubrovinskaia N A, McCammon C, Rozenberg G K, Ahuja R, Osorio-Guillen J M, Dmitriev V, Weber H P, Le Bihan T and Johansson B 2003 J. Phys.-Condens. Mat. 15 7697 [51] Fei Y, Frost D J, Mao H K, Prewitt C T and Häusermann D 1999 Am. Mineral. 84 203 [52] Xu W M, Machavariani G Y, Rozenberg G K and Pasternak M P 2004 Phys. Rev. B 70 174106 [53] Glazyrin K, McCammon C, Dubrovinsky L, Merlini M, Schollenbruch K, Woodland A and Hanfland M 2012 Am. Mineral. 97 128 [54] Muramatsu T, Gasparov L V, Berger H, Hemley R J and Struzhkin V V 2016 J. Appl. Phys. 119 135903 [55] Katsura T 2022 J. Geophys. Res.-Sol. Ea. 127 e2021JB023562 [56] Guignard J and Crichton W A 2018 Mineral. Mag. 78 361 [57] Hu Q and Mao H k 2021 Matter Radiat. at Extremes 6 068403 [58] Myhill R, Ojwang D O, Ziberna L, Frost D J, Ballaran T B and Miyajima N 2016 Contrib. Mineral. Petr. 171 51 [59] Hikosaka K, Sinmyo R, Hirose K, Ishii T and Ohishi Y 2019 Am. Mineral. 104 1356 [60] Qin Q Y, Yang A Q, Tao X R, Yang L X, Gou H Y and Zhang P 2021 Chin. Phys. Lett. 38 089101 [61] Yang A, Qin Q, Tao X, Zhang S, Zhao Y and Zhang P 2021 Phys. Lett. A 414 127607 [62] Jang B G, Kim D Y and Shim J H 2017 Phys. Rev. B 95 075144 [63] Jang B G, Liu J, Hu Q, Haule K, Mao H k, Mao W L, Kim D Y and Shim J H 2019 Phys. Rev. B 100 014418 [64] Nishi M, Kuwayama Y, Tsuchiya J and Tsuchiya T 2017 Nature 547 205 [65] Tang R, Liu J, Kim D Y, Mao H k, Hu Q, Yang B, Li Y, Pickard C J, Needs R J, He Y, Liu H, Prakapenka V B, Meng Y and Yan J 2021 Sci. Bull. 66 1954 [66] Tsuchiya T and Tsuchiya J 2011 Proc. Natl. Acad. Sci. USA 108 1252 [67] Nellis W J 2010 Phys. Rev. B 82 092101 [68] Zhuang Y, Su X, Salke N P, Cui Z, Hu Q, Zhang D and Liu J 2021 Geosci. Front. 12 983 [69] Goncharov A F, Haugen B D, Struzhkin V V, Beck P and Jacobsen S D 2008 Nature 456 231 [70] Montague N L, Kellogg L H and Manga M 1998 Geophys. Res. Lett. 25 2345 [71] van den Berg A P, Yuen D A, Beebe G L and Christiansen M D 2010 Phys. Earth Planet. In. 178 136 [72] Chan K H, Zhang K, Li L and Liao X 2008 Phys. Earth Planet. In. 169 204 [73] Vilim R, Stanley S and Elkins-Tanton L 2013 Astrophys. J. 768 L30 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|