Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087803    DOI: 10.1088/1674-1056/ac657b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced photoluminescence of monolayer MoS2 on stepped gold structure

Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星)
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Different MoS2/Au heterostructures can play an important role in tuning the photoluminescence (PL) and optoelectrical properties of monolayer MoS2. Previous studies of PL of MoS2/Au heterostructures were mainly limited to the PL enhancement by using different Au nanostructures and PL quenching of monolayer MoS2 on flat Au surfaces. Here, we demonstrate the enhanced excitonic PL emissions of monolayer MoS2/Au heterostructures on Si/SiO2 substrates. By transferring the continuous monolayer MoS2 onto a stepped Au structure consisting of 60-nm and 100-nm Au films, the MoS2/Au-60 and MoS2/Au-100 heterostructures exhibit enhanced PL emissions, each with a blue-shifted PL peak in comparison with the MoS2/SiO2. Furthermore, the PL intensity of MoS2/Au-60 is about twice larger than that of MoS2/Au-100. The different enhanced excitonic PL emissions in MoS2/Au heterostructures can be attributed to the different charge transfer effects modified by the stepped Au structure. This work may provide an insight into the excitonic PL and charge transfer effect of MoS2 on Au film and yield novel phenomena in MoS2/Au heterostructures for further study of PL tuning and optoelectrical properties.
Keywords:  MoS2      stepped gold      heterostructures      enhanced photoluminescence  
Received:  09 February 2022      Revised:  05 April 2022      Accepted manuscript online:  08 April 2022
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.55.-m (Photoluminescence, properties and materials)  
  71.35.-y (Excitons and related phenomena)  
  71.35.Pq (Charged excitons (trions))  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2020M671168) and the National Natural Science Foundation of China (Grant No. 62075131).
Corresponding Authors:  Fu-Xing Gu     E-mail:  gufuxing@usst.edu.cn

Cite this article: 

Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星) Enhanced photoluminescence of monolayer MoS2 on stepped gold structure 2022 Chin. Phys. B 31 087803

[1] Li N, Wang Q, Shen C, Wei Z, Yu H, Zhao J, Lu X, Wang G, He C, Xie L, Zhu J, Du L, Yang R, Shi D and Zhang G 2020 Nat. Electron. 3 711
[2] Mouloua D, Kotbi A, Deokar G, Kaja K, Marssi M E, Khakani M A E and Jouiad M 2021 Materials 14 3283
[3] Liu Y C and Gu F X 2021 Nanoscale Adv. 3 2117
[4] Mouri S, Miyauchi Y and Matsuda K 2016 Appl. Phys. Express 9 055202
[5] Su H, Wu S, Yang Y, Leng Q, Huang L, Fu J, Wang Q, Liu H and Zhou L 2021 Nanophotonics 10 975
[6] Liao F, Yu J, Gu Z, Yang Z, Hasan T, Linghu S, Peng J, Fang W, Zhuang S, Gu M and Gu F 2019 Sci. Adv. 5 eaax7398
[7] Luo Y, Shan H, Gao X, Qi P, Li Y, Li B, Rong X, Shen B, Zhang H, Lin F, Tang Z and Fang Z 2020 Nanoscale Horiz. 5 971
[8] Shen T, Li F, Zhang Z, Xu L and Qi J 2020 ACS Appl. Mater. Interfaces 12 54927
[9] Cao S, Hou L, Wang Q, Li C, Yu W, Gan X, Liu K, Premaratne M, Xiao F and Zhao J 2021 Photon. Res. 9 501
[10] Wang Z, Liu J, Fang X, Wang J, Yin Z, He H, Jiang S, Zhao M, Yin Z, Luo D, Shum P and Liu Y J 2021 Nanophotonics 10 1733
[11] Yu L, Liu D, Qi X Z, Xiong X, Feng L T, Li M, Guo G P, Guo G C and Ren X F 2018 Chin. Phys. B 27 047302
[12] Garai M, Zhu Z, Shi J, Li S and Xu Q H 2021 J. Chem. Phys. 155 234201
[13] Kim E, Lee C, Song J, Kwon S, Kim B, Kim D H, Park T J, Jeong M S and Kim D W 2020 J. Phys. Chem. Lett. 11 3039
[14] Yu L, Liu D, Qi X Z, Xiong X, Feng L T, Li M, Guo G P, Guo G C and Ren X F 2018 Chin. Phys. B 27 047302
[15] Holmi J T, Raju R, Ylönen J, Subramaniyam N and Lipsanen H 2021 Superlattice Microst. 160 107077
[16] Yang Y, Liu W G, Lin Z T, Pan R H, Gu C Z and Li J J 2021 Mater. Today Phys. 17 100343
[17] Shan H, Yu Y, Wang X, Luo Y, Zu S, Du B, Han T, Li B, Li Y, Wu J, Lin F, Shi K, Tay B K, Liu Z, Zhu X and Fang Z 2019 Light Sci. Appl. 8 9
[18] Bhanu U, Islam M. Tetard L and Khondaker S I 2014 Sci. Rep. 4 5575
[19] Pollmann E, Sleziona S, Foller T, Hagemann U, Gorynski C, Petri O, Madauß L, Breuer L and Schleberger M 2021 ACS Omega 6 15929
[20] Zhang L, Yan H, Sun X, Dong M, Yildirim T, Wang B, Wen B, Neupane G P, Sharma A, Zhu Y, Zhang J, Liang K, Liu B, Nguyen H T, Macdonald D and Lu Y 2019 Nanoscale 11 418
[21] Shen T, Lu X, Xu L, Li Z and Qi J 2020 Nanosci. Nanotech. Lett. 12 141
[22] Velický M, Rodriguez A, Bouša M, Krayev A V, ondráček M, Honolka J, Ahmadi M, Donnelly G E, Huang F, Abruña H D, Novoselov K S and Frank O 2020 J. Phys. Chem. Lett. 11 6112
[23] Jeong H Y, Kim U J, Kim H, Han G H, Lee H, Kim M S, Jin Y, Ly T H, Lee S Y, Roh Y G, Joo W J, Hwang S W, Park Y and Lee Y H 2016 ACS Nano 10 8192
[24] Chen X, Zang J, Yang X, Zhang Y, Chen Y, Zhao Y, Dong L and Shan C X 2022 Sci. China-Mater. 65 1861
[25] Wang S, Xu Y and Liu Y 2020 Acta Photon. Sin. 49 0316002
[26] Li Y, Qi Z, Liu M, Wang Y, Cheng X, Zhang G and Sheng L 2014 Nanoscale 6 15248
[27] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
[28] Li H, Contryman A W, Qian X F, Ardakani S M, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li J, Manoharan H C and Zheng X L 2015 Nat. Commun. 6 7381
[29] Chakraborty B, Bera A, Muthu D V S, Bhowmick S, Waghmare U V and Sood A K 2012 Phys. Rev. B:Condens. Matter Mater. Phys. 85 161403
[30] Buscema M, Steele G A, Zant H S J and Castellanos-Gomez A 2014 Nano Res. 7 561
[31] Ochedowski O, Marinov K, Scheuschner N, Poloczek A, Bussmann B K, Maultzsch J and Schleberger M 2014 Beilstein J. Nanotechnol. 5 291
[32] Yang L, Cui X, Zhang J, Wang K, Shen M, Zeng S, Dayeh S A, Feng L and Xiang B 2014 Sci. Rep. 4 5649
[33] Li H, Contryman A W, Qian X F, Ardakani S M, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li J, Manoharan H C and Zheng X L 2015 Nat. Commun. 6 7381
[34] Lloyd D, Liu X, Christopher J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K and Bunch J S 2016 Nano Lett. 16 5836
[35] Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O and Kolosov O V 2015 2D Mater. 2 015005
[36] Kwon S, Kwon M H, Song J, Kim E, Kim Y, Kim B R, Hyun J K, Lee S W and Kim D W. 2019 Sci. Rep. 9 14434
[37] Li F, Qi J, Xu M, Xiao J, Xu Y, Zhang X, Liu S and Zhang Y 2017 Small 13 1603103
[38] Markeev P A, Najafidehaghani E, Gan Z, Sotthewes K, George A, Turchanin A and Jong M P 2021 J. Phys. Chem. C 125 13551
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[6] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[7] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[8] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[9] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[10] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[11] Edge assisted epitaxy of CsPbBr3 nanoplates on Bi2O2Se nanosheets for enhanced photoresponse
Haotian Jiang(蒋浩天), Xing Xu(徐兴), Chao Fan(樊超), Beibei Dai(代贝贝), Zhuodong Qi(亓卓栋), Sha Jiang(蒋莎), Mengqiu Cai(蔡孟秋), and Qinglin Zhang(张清林). Chin. Phys. B, 2022, 31(4): 048102.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[14] High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔). Chin. Phys. B, 2022, 31(12): 128502.
[15] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
No Suggested Reading articles found!