State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China(UESTC), Chengdu 610054, China
Abstract In order to fabricate high-performance inverted perovskite solar cells (PeSCs), an appropriate hole transport layer (HTL) is essential since it will affect the hole extraction at perovskite/HTL interface and determine the crystallization quality of the subsequent perovskite films. Herein, a facile and simple method is developed by adding ethanolamine (ETA) into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as HTL. The doping of a low-concentration ETA can efficiently modify the electrical properties of the PEDOT:PSS film and lower the highest occupied molecular orbital (HOMO) level, which is more suitable for the hole extraction from the perovskite to HTL. Besides, ETA-doped PEDOT:PSS will create a perovskite film with larger grain size and higher crystallinity. Hence, the results show that the open-circuit voltage of the device increases from 0.99 V to 1.06 V, and the corresponding power conversion efficiency (PCE) increases from 14.68% to 19.16%. The alkaline nature of ethanolamine greatly neutralizes the acidity of PEDOT:PSS, and plays a role in protecting the anode, leading the stability of the devices to be improved significantly. After being stored for 2000 h, the PCE of ETA-doped PEDOT:PSS devices can maintain 84.2% of the initial value, which is much higher than 67.1% of undoped devices.
Fund: Project supported by the Regional Joint Fund of the Foundation of the National Natural Science Foundation of China (Grant No. U21A20492), the National Natural Science Foundation of China (Grant Nos. 61421002, 61675041, and 51703019), the Sichuan Provincial Science and Technology Program, China (Grant Nos. 2021107, 2019YFG0121, 2019YJ0178, 2020YFG0279, 2020YFG0281, and 2021107), and the Fund from the Sichuan Province Key Laboratory of Display Science and Technology, China.
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜) Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer 2022 Chin. Phys. B 31 087802
[1] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H and Stranks S D 2018 Nature555 497 [2] Chen H, Ye F, Tang W, He J, Yin M, Wang Y, Xie F, Bi E, Yang X, Gratzel M and Han L 2017 Nature550 92 [3] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature499 316 [4] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Il Seok S, Lee J and Seo J 2018 Nat. Energy3 682 [5] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon.13 460 [6] Liu M, Johnston M B and Snaith H J 2013 Nature501 395 [7] Fakharuddin A, Shabbir U, Qiu W, Iqbal T, Sultan M, Heremans P and Schmidt-Mende L 2019 Adv. Mater.31 1807095 [8] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci.7 982 [9] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science347 522 [10] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A and Grätzel M 2016 Science354 206 [11] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M and Park N G 2012 Sci. Rep.2 591 [12] https://www.nrel.gov/pv/cell-efficiency.html [13] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Nat. Mater.13 897 [14] Li X D, Zhang W X, Guo X M, Lu C Y, Wei J Y and Fang J F 2022 Science375 434 [15] Jiang X, Wang F, Wei Q, Li H, Shang Y, Zhou W, Wang C, Cheng P, Chen Q, Chen L and Ning Z 2020 Nat. Commun.11 1245 [16] Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S and Kim J Y 2014 Nanoscale6 6679 [17] Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J and Li Y 2015 Nano Lett.15 2756 [18] Lee K-M, Lin C J, Liou B Y, Yu S M, Hsu C C, Suryanarayanan V and Wu M C 2017 Sol. Energy Mater. Sol. Cell172 368 [19] Li Y, Cole M D, Gao Y, Emrick T, Xu Z, Liu Y and Russell T P 2019 ACS Appl. Energy Mater.2 1634 [20] Elbohy H, Bahrami B, Mabrouk S, Reza K M, Gurung A, Pathak R, Liang M, Qiao Q and Zhu K 2019 Adv. Funct. Mater.29 1806740 [21] Yi M, Jang W and Wang D H 2019 ACS Sustain. Chem. Eng.7 8245 [22] Meng L, You J, Guo T F and Yang Y 2016 Acc Chem. Res.49 155 [23] Wu F L, Li P C, Sun K, Zhou Y L, Chen W, Fu J H, Li M, Lu S R, Wei D S, Tang X S, Zang Z G, Sun L D, Liu X X and Ouyang J Y 2017 Adv. Electron. Mater.3 1700047 [24] Liu X X, Li B C, Zhang N D, Yu Z M, Sun K, Tang B S, Shi D W, Yao H Y, Ouyang J Y and Gong H 2018 Nano Energy53 567 [25] Wang C, Sun K, Fu J H, Chen R, Li M, Zang Z G, Liu X X, Li B C, Gong H and Ouyang J Y 2018 Adv. Sustain. Syst.2 1800085 [26] Hu L J, Fu J H, Yang K, Xiong Z, Wang M, Yang B, Wang H X, Tang X S, Zang Z G, Li M and Sun K 2019 Sol. RRL3 1900104 [27] Zhang L, Yang K, Chen R, Zhou Y L, Chen S S, Zheng Y J, Li M, Xu C H, Tang X S, Zang Z G and Sun K 2019 Adv. Electron. Mater.6 1900648 [28] Liu D, Li Y, Yuan J, Hong Q, Shi G, Yuan D, Wei J, Huang C, Tang J and Fung M K 2017 J. Mater. Chem. A5 5701 [29] Huang X, Wang K, Yi C, Meng T and Gong X 2016 Adv. Energy Mater.6 1501773 [30] Hu L, Sun K, Wang M, Chen W, Yang B, Fu J, Xiong Z, Li X, Tang X, Zang Z, Zhang S, Sun L and Li M 2017 ACS Appl. Mater. Interfaces9 43902 [31] Jiang K, Wu F, Zhang G, Chow P C Y, Ma C, Li S, Wong K S, Zhu L and Yan H 2019 J. Mater. Chem. A7 21662 [32] Xu L, Qian M, Zhang C, Lv W, Jin J, Zhang J, Zheng C, Li M, Chen R and Huang W 2020 Nano Energy67 104244 [33] Hou F, Su Z, Jin F, Yan X, Wang L, Zhao H, Zhu J, Chu B and Li W 2015 Nanoscale7 9427 [34] Huang D, Goh T, Kong J, Zheng Y, Zhao S, Xu Z and Taylor A D 2017 Nanoscale9 4236 [35] Chen K, Hu Q, Liu T, Zhao L, Luo D, Wu J, Zhang Y, Zhang W, Liu F, Russell T P, Zhu R and Gong Q 2016 Adv. Mater.28 10718 [36] Li J F, Zhao C, Zhang H, Tong J F, Zhang P, Yang C Y, Xia Y J and Fan D W 2016 Chin. Phys. B25 028402 [37] deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E and Ginger D S 2016 ACS Energy Lett.1 438 [38] Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H and Gratzel M 2015 Nat. Chem.7 703 [39] Fan R, Song L, Hu Y, Guo X, Liu X, Wang L, Geng C, Xu S, Zhang Y, Zhang Z, Luan N and Bi W 2020 ACS Appl. Mater. Interfaces12 43331 [40] Zheng D, Yang G, Zheng Y, Fan P, Ji R, Huang J, Zhang W and Yu J 2017 Electrochim. Acta247 548 [41] Wang Z, Zhang D, Yang G and Yu J 2021 Appl. Phys. Lett.118 183301 [42] Kim J Y, Jung J H, Lee D E and Joo J 2002 Synthetic Met.126 311 [43] Hu L J, Li M, Yang K, Zhuang X, Yang B, Wang M, Tang X S, Zang Z G, Liu X X, Li B C, Xiao Z Y, Lu S R, Gong H, Ouyang J Y and Sun K 2018 J. Mater. Chem. A6 16583 [44] Yang D B, Sano T, Yaguchi Y, Sasabe H and Kido J 2019 Adv. Funct. Mater.29 1807556 [45] Fu Y, Zhu H, Chen J, Hautzinger M P, Zhu X Y and Jin S 2019 Nat. Rev. Mater.4 169 [46] Wang H, Li X, Yuan M and Yang X 2018 Small14 1703410 [47] Lin C, Chen P, Xiong Z, Liu D, Wang G, Meng Y and Song Q 2018 Nanotechnology29 075203
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.