Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087802    DOI: 10.1088/1674-1056/ac5988
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer

Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜)
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China(UESTC), Chengdu 610054, China
Abstract  In order to fabricate high-performance inverted perovskite solar cells (PeSCs), an appropriate hole transport layer (HTL) is essential since it will affect the hole extraction at perovskite/HTL interface and determine the crystallization quality of the subsequent perovskite films. Herein, a facile and simple method is developed by adding ethanolamine (ETA) into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as HTL. The doping of a low-concentration ETA can efficiently modify the electrical properties of the PEDOT:PSS film and lower the highest occupied molecular orbital (HOMO) level, which is more suitable for the hole extraction from the perovskite to HTL. Besides, ETA-doped PEDOT:PSS will create a perovskite film with larger grain size and higher crystallinity. Hence, the results show that the open-circuit voltage of the device increases from 0.99 V to 1.06 V, and the corresponding power conversion efficiency (PCE) increases from 14.68% to 19.16%. The alkaline nature of ethanolamine greatly neutralizes the acidity of PEDOT:PSS, and plays a role in protecting the anode, leading the stability of the devices to be improved significantly. After being stored for 2000 h, the PCE of ETA-doped PEDOT:PSS devices can maintain 84.2% of the initial value, which is much higher than 67.1% of undoped devices.
Keywords:  perovskite solar cells      PEDOT:PSS      ethanolamine      doping  
Received:  05 January 2022      Revised:  11 February 2022      Accepted manuscript online:  02 March 2022
PACS:  78.56.-a (Photoconduction and photovoltaic effects)  
  78.66.Qn (Polymers; organic compounds)  
  81.05.Lg (Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)  
  61.72.U- (Doping and impurity implantation)  
Fund: Project supported by the Regional Joint Fund of the Foundation of the National Natural Science Foundation of China (Grant No. U21A20492), the National Natural Science Foundation of China (Grant Nos. 61421002, 61675041, and 51703019), the Sichuan Provincial Science and Technology Program, China (Grant Nos. 2021107, 2019YFG0121, 2019YJ0178, 2020YFG0279, 2020YFG0281, and 2021107), and the Fund from the Sichuan Province Key Laboratory of Display Science and Technology, China.
Corresponding Authors:  Jun-Sheng Yu     E-mail:  jsyu@uestc.edu.cn

Cite this article: 

Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜) Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer 2022 Chin. Phys. B 31 087802

[1] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H and Stranks S D 2018 Nature 555 497
[2] Chen H, Ye F, Tang W, He J, Yin M, Wang Y, Xie F, Bi E, Yang X, Gratzel M and Han L 2017 Nature 550 92
[3] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316
[4] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Il Seok S, Lee J and Seo J 2018 Nat. Energy 3 682
[5] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460
[6] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[7] Fakharuddin A, Shabbir U, Qiu W, Iqbal T, Sultan M, Heremans P and Schmidt-Mende L 2019 Adv. Mater. 31 1807095
[8] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 982
[9] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522
[10] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A and Grätzel M 2016 Science 354 206
[11] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M and Park N G 2012 Sci. Rep. 2 591
[12] https://www.nrel.gov/pv/cell-efficiency.html
[13] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Nat. Mater. 13 897
[14] Li X D, Zhang W X, Guo X M, Lu C Y, Wei J Y and Fang J F 2022 Science 375 434
[15] Jiang X, Wang F, Wei Q, Li H, Shang Y, Zhou W, Wang C, Cheng P, Chen Q, Chen L and Ning Z 2020 Nat. Commun. 11 1245
[16] Kim H B, Choi H, Jeong J, Kim S, Walker B, Song S and Kim J Y 2014 Nanoscale 6 6679
[17] Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Luo W, Li X, Zhang W, Lu F, Fang J and Li Y 2015 Nano Lett. 15 2756
[18] Lee K-M, Lin C J, Liou B Y, Yu S M, Hsu C C, Suryanarayanan V and Wu M C 2017 Sol. Energy Mater. Sol. Cell 172 368
[19] Li Y, Cole M D, Gao Y, Emrick T, Xu Z, Liu Y and Russell T P 2019 ACS Appl. Energy Mater. 2 1634
[20] Elbohy H, Bahrami B, Mabrouk S, Reza K M, Gurung A, Pathak R, Liang M, Qiao Q and Zhu K 2019 Adv. Funct. Mater. 29 1806740
[21] Yi M, Jang W and Wang D H 2019 ACS Sustain. Chem. Eng. 7 8245
[22] Meng L, You J, Guo T F and Yang Y 2016 Acc Chem. Res. 49 155
[23] Wu F L, Li P C, Sun K, Zhou Y L, Chen W, Fu J H, Li M, Lu S R, Wei D S, Tang X S, Zang Z G, Sun L D, Liu X X and Ouyang J Y 2017 Adv. Electron. Mater. 3 1700047
[24] Liu X X, Li B C, Zhang N D, Yu Z M, Sun K, Tang B S, Shi D W, Yao H Y, Ouyang J Y and Gong H 2018 Nano Energy 53 567
[25] Wang C, Sun K, Fu J H, Chen R, Li M, Zang Z G, Liu X X, Li B C, Gong H and Ouyang J Y 2018 Adv. Sustain. Syst. 2 1800085
[26] Hu L J, Fu J H, Yang K, Xiong Z, Wang M, Yang B, Wang H X, Tang X S, Zang Z G, Li M and Sun K 2019 Sol. RRL 3 1900104
[27] Zhang L, Yang K, Chen R, Zhou Y L, Chen S S, Zheng Y J, Li M, Xu C H, Tang X S, Zang Z G and Sun K 2019 Adv. Electron. Mater. 6 1900648
[28] Liu D, Li Y, Yuan J, Hong Q, Shi G, Yuan D, Wei J, Huang C, Tang J and Fung M K 2017 J. Mater. Chem. A 5 5701
[29] Huang X, Wang K, Yi C, Meng T and Gong X 2016 Adv. Energy Mater. 6 1501773
[30] Hu L, Sun K, Wang M, Chen W, Yang B, Fu J, Xiong Z, Li X, Tang X, Zang Z, Zhang S, Sun L and Li M 2017 ACS Appl. Mater. Interfaces 9 43902
[31] Jiang K, Wu F, Zhang G, Chow P C Y, Ma C, Li S, Wong K S, Zhu L and Yan H 2019 J. Mater. Chem. A 7 21662
[32] Xu L, Qian M, Zhang C, Lv W, Jin J, Zhang J, Zheng C, Li M, Chen R and Huang W 2020 Nano Energy 67 104244
[33] Hou F, Su Z, Jin F, Yan X, Wang L, Zhao H, Zhu J, Chu B and Li W 2015 Nanoscale 7 9427
[34] Huang D, Goh T, Kong J, Zheng Y, Zhao S, Xu Z and Taylor A D 2017 Nanoscale 9 4236
[35] Chen K, Hu Q, Liu T, Zhao L, Luo D, Wu J, Zhang Y, Zhang W, Liu F, Russell T P, Zhu R and Gong Q 2016 Adv. Mater. 28 10718
[36] Li J F, Zhao C, Zhang H, Tong J F, Zhang P, Yang C Y, Xia Y J and Fan D W 2016 Chin. Phys. B 25 028402
[37] deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E and Ginger D S 2016 ACS Energy Lett. 1 438
[38] Li X, Dar M I, Yi C, Luo J, Tschumi M, Zakeeruddin S M, Nazeeruddin M K, Han H and Gratzel M 2015 Nat. Chem. 7 703
[39] Fan R, Song L, Hu Y, Guo X, Liu X, Wang L, Geng C, Xu S, Zhang Y, Zhang Z, Luan N and Bi W 2020 ACS Appl. Mater. Interfaces 12 43331
[40] Zheng D, Yang G, Zheng Y, Fan P, Ji R, Huang J, Zhang W and Yu J 2017 Electrochim. Acta 247 548
[41] Wang Z, Zhang D, Yang G and Yu J 2021 Appl. Phys. Lett. 118 183301
[42] Kim J Y, Jung J H, Lee D E and Joo J 2002 Synthetic Met. 126 311
[43] Hu L J, Li M, Yang K, Zhuang X, Yang B, Wang M, Tang X S, Zang Z G, Liu X X, Li B C, Xiao Z Y, Lu S R, Gong H, Ouyang J Y and Sun K 2018 J. Mater. Chem. A 6 16583
[44] Yang D B, Sano T, Yaguchi Y, Sasabe H and Kido J 2019 Adv. Funct. Mater. 29 1807556
[45] Fu Y, Zhu H, Chen J, Hautzinger M P, Zhu X Y and Jin S 2019 Nat. Rev. Mater. 4 169
[46] Wang H, Li X, Yuan M and Yang X 2018 Small 14 1703410
[47] Lin C, Chen P, Xiong Z, Liu D, Wang G, Meng Y and Song Q 2018 Nanotechnology 29 075203
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[6] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[7] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[8] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[11] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[14] Fast-speed self-powered PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector with solar-blind UV/visible dual-band photodetection
Ming-Ming Fan(范明明), Kang-Li Xu(许康丽), Ling Cao(曹铃), and Xiu-Yan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 048501.
[15] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
No Suggested Reading articles found!